世界上最大的动物是什么| 阴道炎用什么药效果好| 起风疹的原因是什么引起的| 子宫萎缩是什么原因| dpn是什么意思| 什么是条件兵| 肾痛是什么原因| fnc是什么意思| 伤口拆线挂什么科| 球菌是什么意思| 手脚心热是什么原因| 老上火是什么原因造成的| 呲牙咧嘴是什么意思| 眉毛脱落是什么原因造成的| 结婚证需要什么资料| 寻常疣是什么样子图片| 脑震荡吃什么药| 痔疮属于什么科室| 兔对冲生肖是什么| 北京是我国的什么中心| 钠低会出现什么症状| 临字五行属什么| 肉桂茶是什么茶| 屁特别多是什么原因| 公丁香和母丁香有什么区别| 地狱不空誓不成佛是什么意思| 背疼什么原因| 梦见和死去的亲人说话是什么意思| 挂号信什么意思| 为什么会得肠胃炎| sam是什么意思| 什么药消肿最快最有效| 鱼蛋是什么| 1009是什么星座| 躯体化障碍是什么病| 潜血弱阳性什么意思| 成都什么地方好玩| 流鼻涕吃什么药| 足金什么意思| 血稠是什么原因引起的| 安徽菜属于什么菜系| 失眠去医院挂什么科| 血脂高吃什么水果| 生肖鼠和什么生肖相冲| 尿酸高是什么引起的| 没吃多少东西但肚子很胀是什么| 姌是什么意思| 水痘疤痕用什么药膏| 琥珀色是什么颜色| 什么大笑| 什么叫尿潴留| 灌肠用什么| 舌头上有红点点是什么原因| 上头了是什么意思| 行经是什么意思| 310什么意思| 过期牛奶有什么用途| 手关节黑是什么原因| 头发变棕色是什么原因| 肩膀疼去医院挂什么科| 辽国是现在的什么地方| 粘米粉可以做什么好吃的| 2025年属什么生肖| 什么什么如生| swisse是什么意思| 后脑勺胀痛什么原因| 尿素偏低是什么原因| 魅惑是什么意思| rhc血型阳性是什么意思| 腮腺炎输液用什么药| 吃什么消除肺部结节| 什么鱼嘌呤含量低| 头部mra是什么检查| 现在吃什么水果| 胸小是缺少什么营养| 头上两个旋代表什么| 辛弃疾字什么| 什么是性高潮| 猫舔人是什么意思| 闻思修是什么意思| 十岁女孩喜欢什么礼物| 颞下颌关节紊乱挂什么科| 胖大海和什么搭配最好| 肝脏不好吃什么调理| 波长是什么| 字什么意思| 减肥什么时候喝牛奶| lv什么品牌| 脚跟疼是什么原因| 脚裂口子是什么原因| 阴火是什么意思| 尿酸高注意什么| 智齿冠周炎吃什么药| 什么是智齿牙| 安睡裤是干什么用的| 耳洞疼痛什么原因| dn是什么意思| 什么是生物制剂药| 3的倒数是什么| 炒菜用什么油最健康| 狐臭挂什么科| 啤酒是什么酿造的| 小孩手上脱皮是什么原因| hivab是什么检测| 浅表性胃炎是什么意思| 什么坚果适合减肥吃| 煤气是什么味道| 大姨妈有黑色血块是什么原因| 太极贵人是什么意思| 山药叶子长什么样图片| 看见蝙蝠有什么预兆| 什么梨| 传染病四项挂什么科| 淳朴是什么意思| au990是什么金| 地铁是什么| 碳14呼气试验阳性是什么意思| 茶叶渣属于什么垃圾| 积食吃什么食物帮助消化| 头疼按什么穴位| 血常规能查出什么| 什么家庭养出自私冷漠| 梦到捡菌子是什么意思| 9月3号是什么纪念日| 吃什么能立马催月经| 消化不好吃什么药| 30是什么意思| 什么牌子的风扇好| 武松的绰号是什么| 去痛片又叫什么名| 胎儿左心室灶状强回声是什么意思| 肝火旺会出现什么症状| 湿毒是什么原因引起的| 什么得什么造句| 胃不好的人适合吃什么水果| 姘头是什么意思| 李子有什么功效与作用| 舌头起泡吃什么药好| 胃经当令是什么时辰| eb病毒是什么意思| 为什么喝牛奶会拉肚子| 眉头有痣代表什么意思| 老打瞌睡犯困是什么原因| 黄瓜什么时候种| 勃起不硬吃什么药| 三伏天是什么| 蒲公英什么时候播种| 浑身出汗是什么原因| 窈窕淑女是什么意思| 不良资产是什么| 信奥是什么| 舌头干涩是什么病前兆| 陌陌是干什么的| 女人为什么会得霉菌| 汕头市花是什么花| 静若幽兰什么意思| 甘油三酯高有什么危害| 湖北有什么山| 裸车是什么意思| 静的部首是什么| 差强人意什么意思| 手掌发红是什么病| 胃属于什么科室| 困是什么原因| 百合花什么颜色| 早孕反应最早什么时候出现| 实属什么意思| 梦见腿断了是什么意思| 体检报告都检查什么| 接风是什么意思| 梦见一个人说明什么| 手指头麻木吃什么药| 脸上黑色的小点是什么| 心理医生挂什么科| 股骨头疼痛什么原因| 什么字五行属金| 铁锈用什么能洗掉| pick是什么意思| 茯苓有什么功效| 白芍的功效与作用是什么| 后腰出汗多是什么原因| 新生儿呛奶是什么原因引起的| 青枝骨折是什么意思| 秘语是什么意思| 瞌睡是什么意思| 小孩过敏吃什么药最好| 月经来了吃什么好| or什么意思| 潘粤明老婆现任叫什么| 醋酸菌是什么菌| 螃蟹吃什么食物| 发烧不退烧是什么原因| 什么颜色防晒效果好| 什么药止血效果最快| 叶酸在什么食物里最多| 落幕是什么意思| 鞋底md是什么材质| 梦见看病是什么意思| 老狐狸是什么意思| ky什么意思| 出栏是什么意思| 特朗普是什么星座| 蚯蚓的血是什么颜色的| 上嘴唇发白是因为什么原因| 1927年属什么生肖| 膝关节退行性变是什么意思| 颜值爆表是什么意思| 贵人命是什么意思| 扁桃体炎吃什么药| 墨西哥用什么语言| 男生喉结不明显是为什么| 胆囊切除后需要注意什么| 童瑶为什么要告黄定宇| 蒂芙尼蓝是什么颜色| o是什么元素| 丁卡是什么药| 静脉曲张吃什么食物| 潜规则是什么意思| 经常手麻是什么原因引起的| 菀字五行属什么| 俄罗斯人是什么人种| 女人喝胶原蛋白有什么好处| 木姜子什么味道| 武夷山岩茶属于什么茶| 液金是什么| 西洋参补什么| dan什么意思| 人体最大的细胞是什么| 李连杰为什么不娶丁岚| trab是甲状腺什么指标| 治字五行属什么| 四大是什么| 踩雷是什么意思| 梦到很多蛇是什么意思| nicu是什么意思| 给男人补身体煲什么汤| 治疗灰指甲用什么药| 已读不回是什么意思| 老是放臭屁是什么原因| 说什么情深似海我却不敢当| 普工是什么| 过敏性鼻炎用什么药最好| 音爆是什么| 狗狗可以吃什么水果| 盗墓笔记讲了什么| 百年灵手表什么档次| 倒数是什么| 乙肝两对半145阳性是什么意思| 月经来了头疼是什么原因导致的| 金鱼可以和什么鱼混养| rock什么意思| 睡觉食管反流什么原因| 高沫是什么茶| 登革热是什么症状| 早泄是什么原因引起的| 什么是心理健康| 梦见财神爷是什么预兆| 神是什么意思| 双胞胎代表什么生肖| 胃泌素偏低是什么原因| 搬新家有什么讲究和准备的| 脱线是什么意思| 腺肌瘤是什么意思| 老年人爱出汗是什么原因| 百度Jump to content

如果你早已厌倦,不如出发去美丽的青海(2)

From Wikipedia, the free encyclopedia
This is an old revision of this page, as edited by JCW-CleanerBot (talk | contribs) at 17:09, 10 November 2018 (Use in pattern recognition: clean up, replaced: Transactions on Pattern Analysis and Machine Intelligence → IEEE Transactions on Pattern Analysis and Machine Intelligence). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.
百度 同时大家也深入了解了人民群众的心声和对科技创新的新期待,为自己今后的工作指引了方向。

Vector quantization (VQ) is a classical quantization technique from signal processing that allows the modeling of probability density functions by the distribution of prototype vectors. It was originally used for data compression. It works by dividing a large set of points (vectors) into groups having approximately the same number of points closest to them. Each group is represented by its centroid point, as in k-means and some other clustering algorithms.

The density matching property of vector quantization is powerful, especially for identifying the density of large and high-dimensional data. Since data points are represented by the index of their closest centroid, commonly occurring data have low error, and rare data high error. This is why VQ is suitable for lossy data compression. It can also be used for lossy data correction and density estimation.

Vector quantization is based on the competitive learning paradigm, so it is closely related to the self-organizing map model and to sparse coding models used in deep learning algorithms such as autoencoder.

Training

A simple training algorithm for vector quantization is:[1]

  1. Pick a sample point at random
  2. Move the nearest quantization vector centroid towards this sample point, by a small fraction of the distance
  3. Repeat

A more sophisticated algorithm reduces the bias in the density matching estimation, and ensures that all points are used, by including an extra sensitivity parameter [citation needed]:

  1. Increase each centroid's sensitivity by a small amount
  2. Pick a sample point at random
  3. For each quantization vector centroid , let denote the distance of and
  4. Find the centroid for which is the smallest
  5. Move towards by a small fraction of the distance
  6. Set to zero
  7. Repeat

It is desirable to use a cooling schedule to produce convergence: see Simulated annealing. Another (simpler) method is LBG which is based on K-Means.

The algorithm can be iteratively updated with 'live' data, rather than by picking random points from a data set, but this will introduce some bias if the data are temporally correlated over many samples.

Applications

Vector quantization is used for lossy data compression, lossy data correction, pattern recognition, density estimation and clustering.

Lossy data correction, or prediction, is used to recover data missing from some dimensions. It is done by finding the nearest group with the data dimensions available, then predicting the result based on the values for the missing dimensions, assuming that they will have the same value as the group's centroid.

For density estimation, the area/volume that is closer to a particular centroid than to any other is inversely proportional to the density (due to the density matching property of the algorithm).

Use in data compression

Vector quantization, also called "block quantization" or "pattern matching quantization" is often used in lossy data compression. It works by encoding values from a multidimensional vector space into a finite set of values from a discrete subspace of lower dimension. A lower-space vector requires less storage space, so the data is compressed. Due to the density matching property of vector quantization, the compressed data has errors that are inversely proportional to density.

The transformation is usually done by projection or by using a codebook. In some cases, a codebook can be also used to entropy code the discrete value in the same step, by generating a prefix coded variable-length encoded value as its output.

The set of discrete amplitude levels is quantized jointly rather than each sample being quantized separately. Consider a k-dimensional vector of amplitude levels. It is compressed by choosing the nearest matching vector from a set of n-dimensional vectors , with n < k.

All possible combinations of the n-dimensional vector form the vector space to which all the quantized vectors belong.

Only the index of the codeword in the codebook is sent instead of the quantized values. This conserves space and achieves more compression.

Twin vector quantization (VQF) is part of the MPEG-4 standard dealing with time domain weighted interleaved vector quantization.

Video codecs based on vector quantization

The usage of video codecs based on vector quantization has declined significantly in favor of those based on motion compensated prediction combined with transform coding, e.g. those defined in MPEG standards, as the low decoding complexity of vector quantization has become less relevant.

Audio codecs based on vector quantization

Use in pattern recognition

VQ was also used in the eighties for speech[5] and speaker recognition.[6] Recently it has also been used for efficient nearest neighbor search [7] and on-line signature recognition.[8] In pattern recognition applications, one codebook is constructed for each class (each class being a user in biometric applications) using acoustic vectors of this user. In the testing phase the quantization distortion of a testing signal is worked out with the whole set of codebooks obtained in the training phase. The codebook that provides the smallest vector quantization distortion indicates the identified user.

The main advantage of VQ in pattern recognition is its low computational burden when compared with other techniques such as dynamic time warping (DTW) and hidden Markov model (HMM). The main drawback when compared to DTW and HMM is that it does not take into account the temporal evolution of the signals (speech, signature, etc.) because all the vectors are mixed up. In order to overcome this problem a multi-section codebook approach has been proposed.[9] The multi-section approach consists of modelling the signal with several sections (for instance, one codebook for the initial part, another one for the center and a last codebook for the ending part).

Use as clustering algorithm

As VQ is seeking for centroids as density points of nearby lying samples, it can be also directly used as a prototype-based clustering method: each centroid is then associated with one prototype. By aiming to minimize the expected squared quantization error[10] and introducing a decreasing learning gain fulfilling the Robbins-Monro conditions, multiple iterations over the whole data set with a concrete but fixed number of prototypes converges to the solution of k-means clustering algorithm in an incremental manner.

See also

Part of this article was originally based on material from the Free On-line Dictionary of Computing and is used with permission under the GFDL.

References

  1. ^ Dana H. Ballard (2000). An Introduction to Natural Computation. MIT Press. p. 189. ISBN 0-262-02420-9.
  2. ^ "Bink video". Book of Wisdom. 2025-08-07. Retrieved 2025-08-07.
  3. ^ Valin, JM. (October 2012). Pyramid Vector Quantization for Video Coding. IETF. I-D draft-valin-videocodec-pvq-00. Retrieved 2025-08-07.
  4. ^ "Vorbis I Specification". Xiph.org. 2025-08-07. Retrieved 2025-08-07.
  5. ^ Burton, D. K.; Shore, J. E.; Buck, J. T. (1983). "A generalization of isolated word recognition using vector quantization". IEEE International Conference on Acoustics Speech and Signal Processing ICASSP: 1021–1024. doi:10.1109/ICASSP.1983.1171915.
  6. ^ Soong, F.; A. Rosenberg; L. Rabiner; B. Juang (1985). "A vector Quantization approach to Speaker Recognition". IEEE Proceedings International Conference on Acoustics, Speech and Signal Processing ICASSP. 1: 387–390. doi:10.1109/ICASSP.1985.1168412.
  7. ^ H. Jegou; M. Douze; C. Schmid (2011). "Product Quantization for Nearest Neighbor Search" (PDF). IEEE Transactions on Pattern Analysis and Machine Intelligence. 33 (1): 117–128. doi:10.1109/TPAMI.2010.57.
  8. ^ Faundez-Zanuy, Marcos (2007). "offline and On-line signature recognition based on VQ-DTW". Pattern Recognition. 40 (3): 981–992. doi:10.1016/j.patcog.2006.06.007.
  9. ^ Faundez-Zanuy, Marcos; Juan Manuel Pascual-Gaspar (2011). "Efficient On-line signature recognition based on Multi-section VQ". Pattern Analysis and Applications. 14 (1): 37–45. doi:10.1007/s10044-010-0176-8.
  10. ^ Gray, R.M. (1984). "Vector Quantization". IEEE ASSP Magazine. 1 (2): 4–29. doi:10.1109/massp.1984.1162229.
奶酪是什么东西 娘娘的意思是什么 董监高是什么意思 手书是什么 桑葚和枸杞泡水喝有什么好处
孕妇不能吃什么 排尿少是什么原因 为什么会排卵期出血 胃恶心想吐吃什么药 cn是什么意思啊
出类拔萃什么意思 burberry是什么档次 丁目是什么意思 视网膜病变有什么症状 腹腔积液是什么原因
泪点低是什么意思 牛皮糖是什么意思 眷顾是什么意思 霜降是什么季节 办出国护照需要什么手续
坚字五行属什么hcv9jop5ns6r.cn 鸡肉和什么不能一起吃hcv9jop0ns3r.cn 肚子响是什么原因hcv8jop3ns7r.cn 原子序数等于什么hcv7jop4ns5r.cn xo是什么意思hcv8jop9ns0r.cn
扁桃体炎吃什么药最好hcv8jop3ns1r.cn 胃寒吃什么中成药hcv9jop4ns1r.cn 心脏难受是什么原因hcv8jop4ns9r.cn 药店属于什么单位性质hcv7jop4ns8r.cn 高铁什么时候检票hcv7jop6ns3r.cn
南昌有什么好玩的地方hcv8jop9ns6r.cn 依巴斯汀片是什么药hcv9jop5ns3r.cn 为什么哭会流鼻涕hcv8jop0ns7r.cn 五浊恶世是什么意思naasee.com 月亮五行属什么hcv8jop4ns9r.cn
阑尾炎挂什么科室hcv8jop5ns8r.cn 六月初六是什么节日hcv7jop6ns6r.cn 变节是什么意思helloaicloud.com 属兔的守护神是什么菩萨hcv9jop6ns0r.cn 胰腺炎为什么不能同房hcv9jop3ns4r.cn
百度