gift是什么意思| 宝齐莱算什么档次的表| 肺结节是什么原因| 女孩叫兮兮是什么意思| 口苦吃什么药好| 扩胸运动有什么好处| 梦见家被偷了什么预兆| 圆脸适合什么发型女| 百步穿杨是什么生肖| 共青团书记是什么级别| 秀女是什么意思| 羟丁酸脱氢酶高是什么原因| 吃菠萝有什么好处| 渡情劫是什么意思| 五常法指的是什么| joan什么意思| 粉碎性骨折是什么意思| 吃什么可以缓解孕吐恶心| 子宫内膜增厚有什么影响| 梦见穿新衣服是什么意思| 什么是ntr| 重阳节又称什么节| 胸口有痣代表什么意思| 打耳洞去医院挂什么科| 始祖鸟什么档次| 男人结扎对身体有什么影响| gy是什么意思| asp是什么氨基酸| 胃胀什么原因| 哥哥的哥哥叫什么| 三教九流指的是什么| 杜鹃花什么时候开花| 摊手是什么意思| 脾虚是什么症状| bi是什么意思| 黄腔是什么意思| 马粟是什么| 弊是什么意思| 世界上最毒的蜘蛛叫什么| 窦性心律电轴右偏什么意思| 送向日葵代表什么意思| 生命的尽头是什么| 托帕石是什么宝石| 范思哲香水是什么档次| 消防大队长是什么级别| 霜和乳有什么区别| 属猪的和什么属相最配| 吃什么除湿气| 什么叫带状疱疹| 水分是什么意思| 不言而喻是什么意思| 缺少雌激素吃什么可以补充| 未曾谋面什么意思| 夏天吃什么食物| 早上起来口苦是什么原因| 1950年属虎的是什么命| 妯娌什么意思| 什么是赌博| 1986年属什么生肖| 菲字五行属什么| 颈动脉b超是检查什么| 背部毛孔粗大是什么原因| 菜花病是什么| 冬虫虫念什么| 低烧是什么症状| 甲醛会导致什么病| 缺氯有什么症状怎么补| 入园体检都检查什么| 腘窝囊肿挂什么科| bb霜和cc霜有什么区别| 1889年属什么生肖| 偶像是什么意思| 静脉曲张吃什么药好| 红绳有什么寓意| electrolux是什么牌子| 吃什么药能来月经| 重庆有什么区| 耳朵后面有痣代表什么| 什么东西最隔音| 甲状腺肿大是什么原因引起| 旗人是什么意思| 什么原因造成耳鸣| 有个性是什么意思| 外阴苔藓用什么药膏| 抗核抗体是检查什么的| cici什么意思| 什么什么什么人| 超管是什么| 7月6日什么星座| 一月二十号是什么星座| 腹胀是什么病的前兆| 孕妇吃红枣对胎儿有什么好处| 麻腮风疫苗是预防什么| pr间期延长是什么意思| 吃羊肉不能吃什么东西| 发烧后头疼是什么原因| 部长是什么级别| 追求是什么意思| 会考是什么意思| 鬼代表什么数字| mua是什么意思| 梦见吃梨是什么意思| 党参泡酒有什么功效| 双侧腋窝淋巴结可见什么意思| 六艺是什么| gi是什么意思| 后背痛是什么病的先兆| 潦草什么意思| 店铺开业送什么礼物好| 体脂率是什么意思| 为什么阴道会放气| 小便是红色的是什么原因男性| 什么是性骚扰| 子午相冲是什么生肖| 喜欢蓝色的女人是什么性格| o型血和什么血型容易溶血| 糜烂性胃炎有什么症状| 邓超的公司叫什么名字| 人力资源是做什么的| 颈部ct能检查出什么| 女性尿酸高有什么症状表现| 蓓字五行属什么| 蚕吃什么| 看灰指甲去医院挂什么科| 睡觉脚麻是什么原因| 美如天仙是什么生肖| 活动是什么意思| 忽视是什么意思| 什么是庚日| 祖马龙是什么档次| 木属于五行属什么| 同等学力是什么意思| 清热去火喝什么茶| 女人太瘦吃什么增肥| 曹操的脸谱是什么颜色| 什么是菜花状疣图片| 肾积水是什么原因造成的| 下巴疼是什么原因| 排尿带血是什么原因| 土豆是什么科| 政治面貌填什么| 中药用什么锅熬效果最佳| 黄瓜敷脸有什么作用与功效| 左侧淋巴结肿大是什么原因| 三七草长什么样| 北京户口有什么好处| 鬼剃头是什么原因| 消化道出血吃什么药| 为什么会得多囊| 蚊子最怕什么味道| 月经期间肚子疼是什么原因| 梦见捡钱了是什么预兆| 什么是桑黄| 唇钉是干什么用的| 什么的小虾| vain是什么意思| ipa啤酒什么意思| pro是什么氨基酸| 飞机下降时耳朵疼是什么原因| 宫颈纳囊是什么意思| 鸡汤是什么意思| 什么是新时代| 牙龈溃疡吃什么药| 矫正是什么意思| 48年属什么生肖| 感冒发烧吃什么水果好| 鳞状上皮内高度病变是什么意思| 朱元璋什么星座| 三言两语是什么生肖| 加菲猫是什么品种| 瘿瘤是什么意思| 风湿有什么症状表现| 孕早期适合吃什么水果| 人尽可夫是什么意思| aqua是什么牌子| 梦见喝水是什么意思| 为什么总是放屁很频繁| 什么叫六亲| 手抖是因为什么| 梅花是什么颜色| 九月二十二是什么星座| 晕车喝什么| 经常吃红枣有什么好处和坏处| 尿潴留是什么症状| 脑ct都能查出什么病| 孕囊长什么样| 头上长痣代表什么| 嘢是什么意思| 梦见抓了好多鱼是什么意思| 尿检4个加号什么意思| 今年78岁属什么生肖| 应急车道是什么意思| 心颤吃什么药效果好| 月亮为什么会发光| 犬字旁的字和什么有关| 什么是领导| 一闪一闪的星星像什么| 太监是什么意思| 处级上面是什么级别| 汗臭和狐臭有什么区别怎么辨别| 杏鲍菇炒什么好吃| 11.1是什么星座| 水克什么| 炒菜用什么油比较好| 上24休24是什么意思| 奴仆宫是什么意思| 什么样才是包皮| av是什么| mg什么单位| 心无什么用| 苹能组什么词| 950是什么金| 午餐肉是什么肉| 66岁属什么生肖| 外援是什么意思| 隐形眼镜护理液可以用什么代替| 排骨是什么肉| 血压高吃什么降压药| 羊水多了对宝宝有什么影响| 全身发痒是什么原因| 雷锋代表什么生肖| 异物进入气管什么症状| 女生心脏在什么位置| 春暖花开是什么生肖| 镜子碎了有什么征兆吗| 狻猊是什么| 木甚念什么| 吃甘草片有什么副作用| 黑户是什么意思| earth是什么意思| 什么是流食| 7是什么生肖| 防弹衣为什么能防弹| 读什么| 软化灶是什么意思| 9月24号是什么星座| 梦见纸人是什么意思| 大排是什么肉| 八戒是什么意思| 全腹部ct平扫主要检查什么| 11月12号是什么星座| 猪狗不如是什么生肖| 手上的线分别代表什么图解| 射精无力吃什么药最佳| 金字旁的字有什么| 腔调是什么意思| 8月11日是什么星座| 对虾是什么虾| 关元穴在什么位置| 脚底脱皮是什么原因| 妇科彩超主要检查什么| 什么长而什么| 车厘子与樱桃有什么区别| 降血压吃什么| 头发一把一把的掉是什么原因| 为什么会得骨癌| 为什么一直放屁| 美国今天是什么节日| 五味子什么味道| 补血吃什么药最快最好| erke是什么牌子| 软化灶是什么意思| 531是什么意思| 护理学什么| 百度Jump to content

气场是什么意思

From Wikipedia, the free encyclopedia
(Redirected from Horizontal scaling)

Scalability is the property of a system to handle a growing amount of work. One definition for software systems specifies that this may be done by adding resources to the system.[1]

In an economic context, a scalable business model implies that a company can increase sales given increased resources. For example, a package delivery system is scalable because more packages can be delivered by adding more delivery vehicles. However, if all packages had to first pass through a single warehouse for sorting, the system would not be as scalable, because one warehouse can handle only a limited number of packages.[2]

In computing, scalability is a characteristic of computers, networks, algorithms, networking protocols, programs and applications. An example is a search engine, which must support increasing numbers of users, and the number of topics it indexes.[3] Webscale is a computer architectural approach that brings the capabilities of large-scale cloud computing companies into enterprise data centers.[4]

In distributed systems, there are several definitions according to the authors, some considering the concepts of scalability a sub-part of elasticity, others as being distinct. According to Marc Brooker: "a system is scalable in the range where marginal cost of additional workload is nearly constant." Serverless technologies fit this definition but you need to consider total cost of ownership not just the infra cost. [5]

In mathematics, scalability mostly refers to closure under scalar multiplication.

In industrial engineering and manufacturing, scalability refers to the capacity of a process, system, or organization to handle a growing workload, adapt to increasing demands, and maintain operational efficiency. A scalable system can effectively manage increased production volumes, new product lines, or expanding markets without compromising quality or performance. In this context, scalability is a vital consideration for businesses aiming to meet customer expectations, remain competitive, and achieve sustainable growth. Factors influencing scalability include the flexibility of the production process, the adaptability of the workforce, and the integration of advanced technologies. By implementing scalable solutions, companies can optimize resource utilization, reduce costs, and streamline their operations. Scalability in industrial engineering and manufacturing enables businesses to respond to fluctuating market conditions, capitalize on emerging opportunities, and thrive in an ever-evolving global landscape.[citation needed]

Examples

[edit]

The Incident Command System (ICS) is used by emergency response agencies in the United States. ICS can scale resource coordination from a single-engine roadside brushfire to an interstate wildfire. The first resource on scene establishes command, with authority to order resources and delegate responsibility (managing five to seven officers, who will again delegate to up to seven, and on as the incident grows). As an incident expands, more senior officers assume command.[6]

Dimensions

[edit]

Scalability can be measured over multiple dimensions, such as:[7]

  • Administrative scalability: The ability for an increasing number of organizations or users to access a system.
  • Functional scalability: The ability to enhance the system by adding new functionality without disrupting existing activities.
  • Geographic scalability: The ability to maintain effectiveness during expansion from a local area to a larger region.
  • Load scalability: The ability for a distributed system to expand and contract to accommodate heavier or lighter loads, including, the ease with which a system or component can be modified, added, or removed, to accommodate changing loads.
  • Generation scalability: The ability of a system to scale by adopting new generations of components.
  • Heterogeneous scalability is the ability to adopt components from different vendors.

Domains

[edit]
  • A routing protocol is considered scalable with respect to network size, if the size of the necessary routing table on each node grows as O(log N), where N is the number of nodes in the network. Some early peer-to-peer (P2P) implementations of Gnutella had scaling issues. Each node query flooded its requests to all nodes. The demand on each peer increased in proportion to the total number of peers, quickly overrunning their capacity. Other P2P systems like BitTorrent scale well because the demand on each peer is independent of the number of peers. Nothing is centralized, so the system can expand indefinitely without any resources other than the peers themselves.
  • A scalable online transaction processing system or database management system is one that can be upgraded to process more transactions by adding new processors, devices and storage, and which can be upgraded easily and transparently without shutting it down.
  • The distributed nature of the Domain Name System (DNS) allows it to work efficiently, serving billions of hosts on the worldwide Internet.

Horizontal (scale out) and vertical scaling (scale up)

[edit]
Graphic that visualizes horizontal and vertical scaling.
Horizontal scaling adds new nodes to a computing cluster, while vertical scaling adds resources to existing nodes.

Resources fall into two broad categories: horizontal and vertical.[8]

Horizontal or scale out

[edit]

Scaling horizontally (out/in) means adding or removing nodes, such as adding a new computer to a distributed software application. An example might involve scaling out from one web server to three. High-performance computing applications, such as seismic analysis and biotechnology, scale workloads horizontally to support tasks that once would have required expensive supercomputers. Other workloads, such as large social networks, exceed the capacity of the largest supercomputer and can only be handled by scalable systems. Exploiting this scalability requires software for efficient resource management and maintenance.[7]

Vertical or scale up

[edit]

Scaling vertically (up/down) means adding resources to (or removing resources from) a single node, typically involving the addition of CPUs, memory or storage to a single computer.[7]

Benefits to scale-up include avoiding increased management complexity, more sophisticated programming to allocate tasks among resources and handling issues such as throughput, latency, and synchronization across nodes. Moreover some applications do not scale horizontally.

Network scalability

[edit]

Network function virtualization defines these terms differently: scaling out/in is the ability to scale by adding/removing resource instances (e.g., virtual machine), whereas scaling up/down is the ability to scale by changing allocated resources (e.g., memory/CPU/storage capacity).[9]

Database scalability

[edit]

Scalability for databases requires that the database system be able to perform additional work given greater hardware resources, such as additional servers, processors, memory and storage. Workloads have continued to grow and demands on databases have followed suit.

Algorithmic innovations include row-level locking and table and index partitioning. Architectural innovations include shared-nothing and shared-everything architectures for managing multi-server configurations.

Strong versus eventual consistency (storage)

[edit]

In the context of scale-out data storage, scalability is defined as the maximum storage cluster size which guarantees full data consistency, meaning there is only ever one valid version of stored data in the whole cluster, independently from the number of redundant physical data copies. Clusters which provide "lazy" redundancy by updating copies in an asynchronous fashion are called 'eventually consistent'. This type of scale-out design is suitable when availability and responsiveness are rated higher than consistency, which is true for many web file-hosting services or web caches (if you want the latest version, wait some seconds for it to propagate). For all classical transaction-oriented applications, this design should be avoided.[10]

Many open-source and even commercial scale-out storage clusters, especially those built on top of standard PC hardware and networks, provide eventual consistency only, such as some NoSQL databases like CouchDB and others mentioned above. Write operations invalidate other copies, but often don't wait for their acknowledgements. Read operations typically don't check every redundant copy prior to answering, potentially missing the preceding write operation. The large amount of metadata signal traffic would require specialized hardware and short distances to be handled with acceptable performance (i.e., act like a non-clustered storage device or database).[citation needed]

Whenever strong data consistency is expected, look for these indicators:[citation needed]

  • the use of InfiniBand, Fibrechannel or similar low-latency networks to avoid performance degradation with increasing cluster size and number of redundant copies.
  • short cable lengths and limited physical extent, avoiding signal runtime performance degradation.
  • majority / quorum mechanisms to guarantee data consistency whenever parts of the cluster become inaccessible.

Indicators for eventually consistent designs (not suitable for transactional applications!) are:[citation needed]

  • write performance increases linearly with the number of connected devices in the cluster.
  • while the storage cluster is partitioned, all parts remain responsive. There is a risk of conflicting updates.

Performance tuning versus hardware scalability

[edit]

It is often advised to focus system design on hardware scalability rather than on capacity. It is typically cheaper to add a new node to a system in order to achieve improved performance than to partake in performance tuning to improve the capacity that each node can handle. But this approach can have diminishing returns (as discussed in performance engineering). For example: suppose 70% of a program can be sped up if parallelized and run on multiple CPUs instead of one. If is the fraction of a calculation that is sequential, and is the fraction that can be parallelized, the maximum speedup that can be achieved by using P processors is given according to Amdahl's Law:

Substituting the value for this example, using 4 processors gives

Doubling the computing power to 8 processors gives

Doubling the processing power has only sped up the process by roughly one-fifth. If the whole problem was parallelizable, the speed would also double. Therefore, throwing in more hardware is not necessarily the optimal approach.

Universal Scalability Law

[edit]

In distributed systems, you can use Universal Scalability Law (USL) to model and to optimize scalability of your system. USL is coined by Neil J. Gunther and quantifies scalability based on parameters such as contention and coherency. Contention refers to delay due to waiting or queueing for shared resources. Coherence refers to delay for data to become consistent. For example, having a high contention indicates sequential processing that could be parallelized, while having a high coherency suggests excessive dependencies among processes, prompting you to minimize interactions. Also, with help of USL, you can, in advance, calculate the maximum effective capacity of your system: scaling up your system beyond that point is a waste. [11]

Weak versus strong scaling

[edit]

High performance computing has two common notions of scalability:

  • Strong scaling is defined as how the solution time varies with the number of processors for a fixed total problem size.
  • Weak scaling is defined as how the solution time varies with the number of processors for a fixed problem size per processor.[12]

See also

[edit]

References

[edit]
  1. ^ Bondi, André B. (2000). Characteristics of scalability and their impact on performance. Proceedings of the second international workshop on Software and performance – WOSP '00. p. 195. doi:10.1145/350391.350432. ISBN 158113195X.
  2. ^ Hill, Mark D. (1990). "What is scalability?" (PDF). ACM SIGARCH Computer Architecture News. 18 (4): 18. doi:10.1145/121973.121975. S2CID 1232925. and
    Duboc, Leticia; Rosenblum, David S.; Wicks, Tony (2006). A framework for modelling and analysis of software systems scalability (PDF). Proceedings of the 28th international conference on Software engineering – ICSE '06. p. 949. doi:10.1145/1134285.1134460. ISBN 1595933751.
  3. ^ Laudon, Kenneth Craig; Traver, Carol Guercio (2008). E-commerce: Business, Technology, Society. Pearson Prentice Hall/Pearson Education. ISBN 9780136006459.
  4. ^ "Why web-scale is the future". Network World. 2025-08-06. Retrieved 2025-08-06.
  5. ^ Building Serverless Applications on Knative. O'Reilly Media. ISBN 9781098142049.
  6. ^ Bigley, Gregory A.; Roberts, Karlene H. (2025-08-06). "The Incident Command System: High-Reliability Organizing for Complex and Volatile Task Environments". Academy of Management Journal. 44 (6): 1281–1299. doi:10.5465/3069401 (inactive 12 July 2025). ISSN 0001-4273.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  7. ^ a b c Hesham El-Rewini and Mostafa Abd-El-Barr (April 2005). Advanced Computer Architecture and Parallel Processing. John Wiley & Sons. p. 66. ISBN 978-0-471-47839-3.
  8. ^ Michael, Maged; Moreira, Jose E.; Shiloach, Doron; Wisniewski, Robert W. (March 26, 2007). Scale-up x Scale-out: A Case Study using Nutch/Lucene. 2007 IEEE International Parallel and Distributed Processing Symposium. p. 1. doi:10.1109/IPDPS.2007.370631. ISBN 978-1-4244-0909-9.
  9. ^ "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV". Archived from the original (PDF) on 2025-08-06. Retrieved 2025-08-06.
  10. ^ Sadek Drobi (January 11, 2008). "Eventual consistency by Werner Vogels". InfoQ. Retrieved April 8, 2017.
  11. ^ Gunther, Neil (2007). Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable Applications and Services. ISBN 978-3540261384.
  12. ^ "The Weak Scaling of DL_POLY 3". STFC Computational Science and Engineering Department. Archived from the original on March 7, 2014. Retrieved March 8, 2014.
[edit]
喉咙里痰多是什么原因 舌吻会传染什么病 师范类是什么意思 jnby是什么牌子 12颗珠子的手串什么意思
耳朵一直痒是什么原因 打嗝是什么病的前兆 喜欢紫色代表什么 o2o模式是什么意思 副高是什么职称
atp是什么 箱涵是什么 南方是什么生肖 神经性头疼吃什么药好 胃胀消化不好吃什么药
living是什么意思 尿酸高的人不能吃什么 不疼不痒的红疹是什么 泉州和晋江什么关系 更年期吃什么食物好
dsa检查是什么意思hcv9jop2ns9r.cn 呼吸快是什么原因hcv7jop6ns3r.cn 三生三世是什么意思hcv9jop8ns2r.cn 秒了是什么意思hcv8jop9ns5r.cn 属牛和什么属相相冲hcv8jop2ns0r.cn
鸟在电线上为什么不会触电sscsqa.com 劲酒是什么酒hcv8jop7ns3r.cn tips什么意思hcv9jop6ns9r.cn 痴汉是什么意思hcv9jop4ns5r.cn 疱疹性咽峡炎吃什么食物hcv8jop8ns3r.cn
人为什么会自杀hcv8jop1ns7r.cn dht是什么hcv8jop0ns7r.cn 籍贯是什么意思hcv9jop6ns5r.cn 橱柜用什么材料好hcv8jop4ns9r.cn 空泡蝶鞍是什么病liaochangning.com
猫起什么名字好hcv7jop9ns5r.cn 胆气虚吃什么中成药sscsqa.com 什么一梦hcv9jop5ns7r.cn 后背发冷发凉属于什么症状hcv8jop8ns8r.cn 十三是什么意思hcv7jop9ns9r.cn
百度