男羊配什么属相最好| 欲情故纵什么意思| 过三关 是什么意思| 安厝是什么意思| 身体缺钾会有什么症状| 什么病可以鉴定病残| 未来是什么意思| 给花施肥用什么肥料| 哮喘咳嗽吃什么药好得快| 蚂蝗怕什么| 检查胸部应该挂什么科| 什么菜不能放醋| 肝胆胰脾彩超查什么病| 阴茎中途疲软吃什么药| 大便潜血阳性意味着什么| 心力憔悴是什么意思| 四妙丸有什么功效与作用| 吧唧嘴什么意思| 己是什么意思| 出阁是什么意思| 性取向是什么| 尿液发黄什么原因| ipv是什么| 为什么发烧| 阴虚是什么意思| 8月1日什么星座| 拔牙第二天可以吃什么| 噤口痢是什么意思| 安康鱼长什么样| 经常流鼻血是什么原因引起的| 医助是什么工作| 皮肤白斑点是什么原因| 萘普生是什么药| 男朋友昵称叫什么好听| 微信被拉黑后显示什么| 圣灵是什么意思| 612是什么星座| 腿部肿胀是什么原因引起的| 防血栓是什么意思| 人中长痘痘什么原因| 为什么有的人怎么吃都不胖| 舌加氏念什么| 凝血五项是检查什么的| 尿道炎什么症状| 可乐煮姜有什么作用| 窦性心律吃什么药| 89年什么命| 7月出生的是什么星座| 流年花开讲的什么| 孕妇喝什么牛奶好| 人为什么会出汗| 男人时间短什么原因| 胸疼应该挂什么科| 舌苔厚口臭吃什么药好| 睡眠不好吃什么药最有效| 甲减是什么意思| 三伏天是什么| 乙酸是什么| 顺铂是什么药| 肺大泡是什么病严重吗| 孩子改姓需要什么手续| 月经周期短是什么原因| 荷里活什么意思| 转氨酶高什么症状| 旺五行属什么| eason是什么意思| 茶毫是什么| 结婚20年是什么婚姻| 热泪盈眶的盈是什么意思| 雪梨百合炖冰糖有什么功效| 气管炎吃什么药最有效| 航母舰长是什么级别| 为什么会胃疼| 肌桥是什么意思| 十一月底是什么星座| 黄瓜敷脸有什么功效| 为什么会长寻常疣| 女生肚子大是什么原因| 痛心疾首的疾什么意思| 医保自费是什么意思| dw是什么意思| 低钙血症是什么意思| sobranie是什么烟| 玫瑰糠疹吃什么药最有效| 猫离家出走预示着什么| sunnyday是什么意思| 发膜和护发素有什么区别| 贬值是什么意思| 吃什么蔬菜可以降血脂| 堞是什么意思| 桑蚕丝用什么洗最好| 过生日吃什么| 中药学专业学什么| 颈椎看什么科| 一个口一个我念什么| 小孩嗓子疼吃什么药| hpv感染什么症状| 超敏c蛋白反应高是什么原因| 胶原蛋白是什么| 栀子花什么时候修剪| 为什么会有甲状腺结节| 今年三十岁属什么生肖| 10度穿什么| 面部抽搐是什么原因| 妲是什么意思| 小儿麻痹是什么病| 小猫不能吃什么| 筋是什么| 如是我闻是什么意思| 胆囊切除有什么危害| 婴儿呛奶是什么原因引起的| 牙龈肿痛看什么科| 胃不好吃什么最养胃| 女人梦见猫是什么预兆| 雪人是什么生肖| 小透明是什么意思| 101什么意思| 胆囊炎要注意些什么| 你是我的楼兰是什么意思| 右眼跳什么| 八段锦什么时候练最好| 安哥拉树皮有什么功效| 黄体酮吃了有什么副作用| 物理意义是什么意思| 头尖适合什么发型| 十字架代表什么意思| 英短蓝猫吃什么猫粮好| 绿色痰是什么原因| 社保卡属于什么银行| 牙龈萎缩用什么牙膏好| 粉丝是什么意思| 宫保鸡丁属于什么菜系| 为什么会有痔疮| 猫抓病是什么病| 空调外机不出水是什么原因| 右脸突然肿了是什么原因| 收悉是什么意思| tct是什么| 什么叫认知| 饧是什么意思| 房颤什么症状| 氯化钠是什么盐| 柿子和什么不能一起吃| 胆结石什么原因引起的| 长白毛是什么原因| 牙龈爱出血是什么原因| 武警支队是什么级别| pf什么意思| 尿潜血十一是什么意思| 男狗配什么属相最好| mr是什么的缩写| 什么渐渐什么| 吃芒果有什么坏处| 什么叫种草| 米田共是什么意思| 荀彧字什么| 夏天感冒咳嗽吃什么药| 专科有什么专业| 媚骨是什么意思| 双鱼座是什么星座| 中药什么时间喝效果最好| 睡觉打呼噜什么原因| 脸上爱出汗是什么原因| 机票什么时候买便宜| 有骨气是什么意思| 水由什么组成| 饴糖是什么糖| b细胞淋巴肿瘤是一种什么病| 坐骨神经痛用什么药最好| 车万是什么意思| 月经期间适合吃什么| 利尿什么意思| 月经少吃什么好排血多| 两个夫一个车是什么字| 转氨酶偏高有什么症状| 海豚吃什么| 糖尿病能吃什么主食| 盆底肌是什么| 乳酸是什么| 拉不出屎是什么原因| 结石有什么症状| 无所不用其极什么意思| 禹五行属什么| 乳腺结节吃什么散结快| 什么的天山| 8.2号是什么星座| 什么食物是发物| 梧桐叶像什么| 增加性功能吃什么药| 早上5点多是什么时辰| 常喝普洱茶有什么好处| 属猴和什么属相相冲| 长疱疹是什么原因| 打玻尿酸有什么副作用吗| 鳄鱼的天敌是什么动物| 正佳广场有什么好玩的| 章鱼的血是什么颜色| 龙的九个儿子都叫什么名字| 放热屁是什么原因| 淫羊藿是什么| 什么是量子力学| 葫芦娃的爷爷叫什么| 龟苓膏是什么| 牛奶什么时候喝| 白目是什么意思| 腘窝囊肿挂什么科| 什么水果维生素含量高| 无什么| 卡替治疗是什么意思| 骄阳似火是什么意思| 比丘什么意思| 剪头发叫什么手术| 刑警队是干什么的| 为什么会得肩周炎| 乳腺增生结节吃什么药| lee是什么牌子| 造孽是什么意思| 九七年属什么生肖| 黄精能治什么病| 胃里有胀气吃什么药| 硒是什么| 洋溢着什么样的笑容| river是什么意思| 什么是假性抑郁症| 胆囊壁稍毛糙是什么意思| 蟑螂为什么会飞| 丑指什么生肖| 血小板为什么会减少| 什么力气| 月经不来是什么原因| 苏州机场叫什么名字| 一步登天是什么生肖| 人生三件大事是指什么| 眼白有黄斑是什么原因| 腋臭是什么原因引起的| nb是什么意思| 谷草转氨酶偏低是什么意思| 火字旁有什么字| 拉不出尿是什么原因| 咸湿佬是什么意思| 失业是什么意思| 2005年属鸡的是什么命| 咳嗽吃什么好| 农历六月十八是什么日子| 盐糖水有什么功效作用| 咽炎咳嗽吃什么| 37是什么意思| 地贫有什么症状| 牌匾是什么意思| 天蝎女和什么星座最配| 什么的风儿| 大便粘马桶吃什么药| 荤菜是什么意思| 什么的地板| 和珅是什么官| 今年三十属什么| 慢性萎缩性胃炎c2是什么意思| 晨尿有泡沫是什么原因| 尿常规能查出什么病| 手指代表什么生肖| 考试早餐吃什么| 怀孕吃什么水果最好| 李子什么人不能吃| 缄默什么意思| 百度Jump to content

·现在怎样才能更好的利用渠道网谈成业务??

From Wikipedia, the free encyclopedia
Orbitofrontal cortex
Approximate location of the OFC shown on a sagittal MRI
Orbital surface of left frontal lobe (from below)
Details
Part ofFrontal lobe
Identifiers
Latincortex orbitofrontalis
NeuroNames91
NeuroLex IDbirnlex_1049
FMA242003
Anatomical terms of neuroanatomy
百度 据了解,德清产业新城围绕工业智能控制产业集群、信息服务集群、智能网联汽车关键零部件产业集群打造。

The orbitofrontal cortex (OFC) is a prefrontal cortex region in the frontal lobes of the brain which is involved in the cognitive process of decision-making. In non-human primates it consists of the association cortex areas Brodmann area 11, 12 and 13; in humans it consists of Brodmann area 10, 11 and 47.[1]

The OFC is functionally related to the ventromedial prefrontal cortex.[2] Therefore, the region is distinguished due to the distinct neural connections and the distinct functions it performs.[3] It is defined as the part of the prefrontal cortex that receives projections from the medial dorsal nucleus of the thalamus, and is thought to represent emotion, taste, smell and reward in decision-making.[4][5][6][7][8][9][10][11] It gets its name from its position immediately above the orbits in which the eyes are located. Considerable individual variability has been found in the OFC of humans.[12] A related area is found in rodents.[13]

Structure

[edit]

The OFC is divided into multiple broad regions distinguished by cytoarchitecture, including Brodmann area 47/12, Brodmann area 11, Brodmann area 14, Brodmann area 13, and Brodmann area 10.[14] Four gyri are split by a complex of sulci that most frequently resembles a "H" or a "K" pattern. Extending along the rostro-caudal axis, two sulci, the lateral and orbital sulci, are usually connected by the transverse orbital sulcus, which extends along a medial-lateral axis. Most medially, the medial orbital gyrus is separated from the gyrus rectus by the olfactory sulcus.[15] Anteriorly, both the gyrus rectus and the medial part of the medial orbital gyrus consist of area 11(m), and posteriorly, area 14. The posterior orbital gyrus consists mostly of area 13, and is bordered medially and laterally by the anterior limbs of the medial and lateral orbital sulci. Area 11 makes up a large part of the OFC involving both the lateral parts of the medial orbital gyrus and the anterior orbital gyrus. The lateral orbital gyrus consists mostly of area 47/12.[14] Most of the OFC is granular, although the caudal parts of area 13 and area 14 are agranular.[16] These caudal regions, which sometimes include parts of the insular cortex, respond primarily to unprocessed sensory cues.[17]

Connections

[edit]

The connectivity of the OFC varies somewhat along a rostral-caudal axis. The caudal OFC is more heavily interconnected with sensory regions, notably receiving direct input from the pyriform cortex. The caudal OFC is also the most heavily interconnected with the amygdala.[18] Rostrally, the OFC receives fewer direct sensory projections, and is less connected with the amygdala, but it is interconnected with the lateral prefrontal cortex and parahippocampus.[17] The connectivity of the OFC has also been conceptualized as being composed of two networks; an orbital network composed of most of the central parts of the OFC, including most of the areas 47/12, 13, and 11; a medial network composed of the medial most and caudolateral regions of the OFC, as well as areas 24, 25 and 32 of the medial prefrontal cortex.[19] The medial and orbital networks are sometimes referred to as the "visceromotor network" and the "sensory network", respectively.[20]

Afferents

[edit]

The OFC receives projections from multiple sensory modalities. The primary olfactory cortex, gustatory cortex, secondary somatosensory cortex, superior and inferior temporal gyrus (conveying visual information) all project to the OFC.[16][21][22] Evidence for auditory inputs is weak, although some neurons respond to auditory stimuli, indicating an indirect projection may exist.[19] The OFC also receives input from the medial dorsal nucleus, insular cortex, entorhinal cortex, perirhinal cortex, hypothalamus, and amygdala.[21][23]

Efferents

[edit]

The orbitofrontal cortex is reciprocally connected with the perirhinal and entorhinal cortices,[23] the amygdala, the hypothalamus, and parts of the medial temporal lobe. In addition to these outputs, the OFC also projects to the striatum, including the nucleus accumbens, caudate nucleus, and ventral putamen, as well as regions of the midbrain including the periaqueductal gray, and ventral tegmental area.[21][24] OFC inputs to the amygdala synapse on multiple targets, including two robust pathways to the basolateral amygdala and intercalated cells of the amygdala, as well as a weaker direct projection to the central nucleus of the amygdala.[18]

Function

[edit]

Multiple functions have been ascribed to the OFC, including mediating context-specific responses,[25] encoding contingencies in a flexible manner, encoding value, encoding inferred value, inhibiting responses, learning changes in contingency, emotional appraisal,[26] altering behavior through somatic markers, driving social behavior, and representing state spaces.[27][28] While most of these theories explain certain aspects of electrophysiological observations and lesion related changes in behavior, they often fail to explain, or are contradicted by other findings.

One proposal that explains the variety of OFC functions is that the OFC encodes state spaces, or the discrete configuration of internal and external characteristics associated with a situation and its contingencies.[29] For example, the proposal that the OFC encodes economic value may be a reflection of the OFC encoding task state value.[25] The representation of task states could also explain the proposal that the OFC acts as a flexible map of contingencies, as a switch in task state would enable the encoding of new contingencies in one state, with the preservation of old contingencies in a separate state, enabling switching contingencies when the old task state becomes relevant again.[28] The representation of task states is supported by electrophysiological evidence demonstrating that the OFC responds to a diverse array of task features, and is capable of rapidly remapping during contingency shifts.[28] The representation of task states may influence behavior through multiple potential mechanisms. For example, the OFC is necessary for ventral tegmental area (VTA) neurons to produce a dopaminergic reward prediction error, and the OFC may encode expectations for computation of RPEs in the VTA.[25]

Specific functions have been ascribed to subregions of the OFC. The lateral OFC has been proposed to reflect potential choice value, enabling fictive (counterfactual) prediction errors to potentially mediate switching choices during reversal, extinction and devaluation.[30] Optogenetic activation of the lOFC enhances goal directed over habitual behavior, possibly reflecting increased sensitivity to potential choices and therefore increased switching. The mOFC, on the other hand, has been proposed to reflect relative subjective value.[26] In rodents, a similar function has been ascribed to the mOFC, encoding action value in a graded fashion, while the lOFC has been proposed to encode specific sensory features of outcomes.[31] The lOFC has also been proposed to encode stimulus outcome associations, which are then compared by value in the mOFC.[32] Meta analysis of neuroimaging studies in humans reveals that a medial-lateral valence gradient exists, with the medial OFC responding most often to reward, and the lateral OFC responding most often to punishment. A posterior-anterior abstractness gradient was also found, with the posterior OFC responding to more simple rewards, and the anterior OFC responding more to abstract rewards.[33] Similar results were reported in a meta-analysis of studies on primary versus secondary rewards.[34]

The OFC and basolateral amygdala (BLA) are highly interconnected, and their connectivity is necessary for devaluation tasks. Damage to either the BLA or the OFC before, but only the OFC after devaluation, impairs performance.[35] While the BLA only responds to cues predicting salient outcomes in a graded fashion in accordance with value, the OFC responds to both value and the specific sensory attributes of cue-outcome associations. While OFC neurons that, early in learning, respond to outcome receipt normally transfer their response to the onset of cues that predict the outcome, damage to the BLA impairs this form of learning.[36]

The posterior orbitofrontal cortex (pOFC) is connected to the amygdala via multiple paths that are capable of both upregulating and downregulating autonomic nervous system activity.[37] Tentative evidence suggests that the neuromodulator dopamine plays a role in mediating the balance between the inhibitory and excitatory pathways, with a high dopamine state driving autonomic activity.[38]

It has been suggested that the medial OFC is involved in making stimulus-reward associations and the reinforcement of behavior, while the lateral OFC is involved in stimulus-outcome associations and the evaluation and possibly reversal of behavior.[39] Activity in the lateral OFC is found, for example, when subjects encode new expectations about punishment and social reprisal.[40][41]

The mid-anterior OFC has been found to consistently track subjective pleasure in neuroimaging studies. A hedonic hotspot has been discovered in the anterior OFC, which is capable of enhancing liking response to sucrose. The OFC is also capable of biasing the affective responses induced by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonism in the nucleus accumbens towards appetitive responses.[42]

The OFC is capable of modulating aggressive behavior via projections to interneurons in the amygdala that inhibit glutaminergic projections to the ventromedial hypothalamus.[43]

Electrophysiology

[edit]

Neurons in the OFC respond both to primary reinforcers, and to cues that predict rewards across multiple sensory domains. The evidence for responses to visual, gustatory, somatosensory, and olfactory stimuli is robust, but evidence for auditory responses is weaker. In a subset of OFC neurons, neural responses to rewards or reward cues are modulated by individual preference and by internal motivational states such as hunger. A fraction of neurons that respond to sensory cues predicting a reward are selective for reward, and exhibit reversal behavior when cue outcome relationships are swapped. Neurons in the OFC also exhibit responses to the absence of an expected reward and punishment. Another population of neurons exhibits responses to novel stimuli and can "remember" familiar stimuli for up to a day.[44]

During cued reward or cued instrumental reward tasks, neurons in the OFC exhibit three general patterns of firing; firing in response to cues: firing before reward receipt; firing in response to reward receipt. In contrast to the medial prefrontal cortex and striatum, OFC neurons do not exhibit firing mediated by movement. Their reward-predictive responses are, however, shaped by attention: when shifting attention between two alternatives, the same OFC population will represent positively the value of a currently attended item, but negatively the value of the unattended item.[45] The encoding of reward magnitude is also flexible, and takes into account the relative values of present rewards.[46]

Humans

[edit]

The human OFC is among the least-understood regions of the human brain. It has been proposed that the OFC is involved in sensory integration, in representing the affective value of reinforcers, and in decision-making and expectation.[1] In particular, the OFC seems to be important in signaling the expected rewards/punishments of an action given the particular details of a situation.[47] In doing this, the brain is capable of comparing the expected reward/punishment with the actual delivery of reward/punishment, thus, making the OFC critical for adaptive learning. This is supported by research in humans, non-human primates, and rodents.

Psychiatric disorders

[edit]

The orbitofrontal cortex has been implicated in borderline personality disorder,[48] schizophrenia, major depressive disorder, bipolar disorder, obsessive-compulsive disorder, addiction, post-traumatic stress disorder, autism,[49] and panic disorder. Although neuroimaging studies have provided evidence for dysfunction in a wide variety of psychiatric disorders, the enigmatic nature of the OFCs role in behavior complicates the understanding of its role in the pathophysiology of psychiatric disorders.[50] The function of the OFC is not known, but its anatomical connections with the ventral striatum, amygdala, hypothalamus, hippocampus, and periaqueductal grey support a role in mediating reward and fear related behaviors.[51]

Obsessive compulsive disorder

[edit]

Meta-analyses of neuroimaging studies in obsessive compulsive disorder (OCD) report hyperactivity in areas generally considered to be part of the orbitofrontal segment of the cortico-basal ganglia-thalamo-cortical loop, such as the caudate nucleus, thalamus and orbitofrontal cortex. OCD has been proposed to reflect a positive feedback loop due to mutual excitation of the OFC and subcortical structures.[52] While the OFC is usually overactive during symptom provocation tasks, cognitive tasks usually elicit hypoactivity of the OFC;[53] This may reflect a distinction between emotional and non-emotional tasks, lateral and medial OFC,[54] or simply just inconsistent methodologies.[55]

Addiction

[edit]

Animal models and cell-specific manipulations in relation to drug-seeking behavior implicate dysfunction of the OFC in addiction.[56] Substance use disorders are associated with a variety of deficits related to flexible goal-directed behavior and decision-making. These deficits overlap with symptoms related to OFC lesions, and are also associated with reduced orbitofrontal grey matter, resting state hypometabolism, and blunted OFC activity during tasks involving decision-making or goal-directed behavior. In contrast to resting state and decision-related activity, cues associated with drugs evoke robust OFC activity that correlates with craving.[57] Rodent studies also demonstrate that lOFC to BLA projections are necessary for cue-induced reinstatement of self-administration. These findings are all congruent with the role that the OFC plays in encoding the outcomes associated with certain stimuli.[58][59][60] The progression towards compulsive substance abuse may reflect a shift between model-based decision-making, where an internal model of future outcomes guides decisions, to model free learning, where decisions are based on reinforcement history. Model-based learning involves the OFC and is flexible and goal-directed, while model-free learning is more rigid; as a shift to more model-free behavior due to dysfunction in the OFC, like that produced by drug misuse, could underlie drug-seeking habits.[61]

Behavioral disorders

[edit]

Conduct disorder is associated with both structural abnormalities and functional abnormalities during affective tasks.[62] Abnormalities in OFC structure, activity, and functional connectivity have all been observed in association with aggression.[63]

Affective disorders

[edit]

Neuroimaging studies have found abnormalities in the OFC in MDD and bipolar disorder. Consistent with the medial/reward and lateral/punishment gradient found in neuroimaging studies, some neuroimaging studies have observed elevated lateral OFC activity in depression, as well as reduced interconnectivity of the medial OFC, and enhanced interconnectivity in the lateral OFC.[64] Hypoactivity of the lateral OFC has been frequently observed in bipolar disorder, in particular during manic episodes.[64]

Research

[edit]

Imaging

[edit]

Using functional magnetic resonance imaging (fMRI) to image the human OFC is a challenge, because this brain region is in proximity to the air-filled sinuses. This means that artifact errors can occur in the signal processing, causing, for example, geometric distortions that are common when using echo-planar imaging (EPI) at higher magnetic field strengths. Extra care is therefore recommended for obtaining a good signal from the orbitofrontal cortex, and a number of strategies have been devised, such as automatic shimming at high static magnetic field strengths.[65]

Rodents

[edit]

In rodents, the OFC is entirely agranular or dysgranular.[16] The OFC is divided into ventrolateral (VLO), lateral (LO), medial (MO) and dorsolateral (DLO) regions.[19] Using highly specific techniques to manipulate circuitry, such as optogenetics, the OFC has been implicated in OCD like behaviors,[66] and in the ability to use latent variables in decision-making task.[67]

Clinical significance

[edit]

Damage

[edit]

Destruction of the OFC through acquired brain injury typically leads to a pattern of disinhibited behaviour. Examples include swearing excessively, hypersexuality, poor social interaction, compulsive gambling, drug use (including alcohol and tobacco), and poor empathising ability. Disinhibited behaviour by patients with some forms of frontotemporal dementia is thought to be caused by degeneration of the OFC.[68]

Disruption

[edit]

When OFC connections are disrupted, a number of cognitive, behavioral, and emotional consequences may arise. Research supports that the main disorders associated with dysregulated OFC connectivity/circuitry center around decision-making, emotion regulation, impulsive control, and reward expectation.[69][70][71][72] A recent multi-modal human neuroimaging study shows disrupted structural and functional connectivity of the OFC with the subcortical limbic structures (e.g., amygdala or hippocampus) and other frontal regions (e.g., dorsal prefrontal cortex or anterior cingulate cortex) correlates with abnormal OFC affect (e.g., fear) processing in clinically anxious adults.[73]

One clear extension of problems with decision-making is drug addiction/substance dependence, which can result from disruption of the striato-thalamo-orbitofrontal circuit.[72][70][74] Attention deficit hyperactivity disorder (ADHD) have also been implicated in dysfunction of neural reward circuitry controlling motivation, reward, and impulsivity, including OFC systems.[71] Other disorders of executive functioning and impulse control may be affected by OFC circuitry dysregulation, such as obsessive–compulsive disorder and trichotillomania[75][76][77]

Some dementias are also associated with OFC connectivity disruptions. The behavioral variant of frontotemporal dementia[78] is associated with neural atrophy patterns of white and gray matter projection fibers involved with OFC connectivity.[79] Finally, some research suggests that later stages of Alzheimer's disease can be impacted by altered connectivity of OFC systems.[77]

Orbitofrontal epilepsy

[edit]

Orbitofrontal epilepsy is rare, but does occur. The presentation of OFC epilepsy is fairly diverse, although common characteristics include sleep-related symptoms, automatisms, and hypermotor symptoms. One review reported that auras were generally not common or nonspecific, while another reported that OFC epilepsy was associated with auras involving somatosensory phenomena and fear.[80][81][82]

Assessment

[edit]

Visual discrimination test

[edit]

The visual discrimination test has two components. In the first component, "reversal learning", participants are presented with one of two pictures, A and B. They learn that they will be rewarded if they press a button when picture A is displayed, but punished if they press the button when picture B is displayed. Once this rule has been established, the rule swaps. In other words, it is now correct to press the button for picture B, not picture A. Most healthy participants pick up on this rule reversal almost immediately, but patients with OFC damage continue to respond to the original pattern of reinforcement, although they are now being punished for persevering with it. Rolls et al.[83] noted that this pattern of behaviour is particularly unusual given that the patients reported that they understood the rule.

The second component of the test is "extinction". Again, participants learn to press the button for picture A, but not for picture B. However, this time, instead of the rules reversing, the rule changes altogether. Now the participant will be punished for pressing the button in response to either picture. The correct response is not to press the button at all, but people with OFC dysfunction find it difficult to resist the temptation to press the button despite being punished for it.

Iowa gambling task

[edit]

A simulation of real-life decision-making, the Iowa gambling task is widely used in cognition and emotion research.[84] Participants are presented with four virtual decks of cards on a computer screen. They are told that each time they choose a card they stand to win some game money. They are told that the aim of the game is to win as much money as possible. Every so often, however, when they choose a card they will lose some money. The task is meant to be opaque. That is, participants are not meant to consciously work out the rule, and they are supposed to choose cards based on their "gut reaction." Two of the decks are "bad decks", which means that, over a long enough time, they will make a net loss; the other two decks are "good decks" and will make a net gain over time.

Most healthy participants sample cards from each deck, and after about 40 or 50 selections are fairly good at sticking to the good decks. Patients with OFC dysfunction, however, continue to perseverate with the bad decks, sometimes even though they know that they are losing money overall. Concurrent measurement of galvanic skin response shows that healthy participants show a "stress" reaction to hovering over the bad decks after only 10 trials, long before the conscious sensation that the decks are bad. By contrast, patients with OFC dysfunction never develop this physiological reaction to impending punishment. Bechara and his colleagues explain this in terms of the somatic marker hypothesis. The Iowa gambling task is currently being used by a number of research groups using fMRI to investigate which brain regions are activated by the task in healthy volunteers as well as clinical groups with conditions such as schizophrenia and obsessive compulsive disorder.

The faux pas test is a series of vignettes recounting a social occasion during which someone said something that should not have been said, or an awkward occurrence. The participant's task is to identify what was said that was awkward, why it was awkward, how people would have felt in reaction to the faux pas and to a factual control question. Although first designed for use in people on the autism spectrum,[85] the test is also sensitive to patients with OFC dysfunction, who cannot judge when something socially awkward has happened despite appearing to understand the story perfectly well.

Additional images

[edit]

See also

[edit]

References

[edit]
  1. ^ a b Kringelbach M. L. (2005). "The orbitofrontal cortex: linking reward to hedonic experience". Nature Reviews Neuroscience. 6 (9): 691–702. doi:10.1038/nrn1747. PMID 16136173. S2CID 205500365.
  2. ^ Phillips, LH., MacPherson, SE. & Della Sala, S. (2002). 'Age, cognition and emotion: the role of anatomical segregation in the frontal lobes: the role of anatomical segregation in the frontal lobes'. in J Grafman (ed.), Handbook of Neuropsychology: the frontal lobes. Elsevier Science, Amsterdam, pp. 73-98.
  3. ^ Barbas H, Ghashghaei H, Rempel-Clower N, Xiao D (2002) Anatomic basis of functional specialization in prefrontal cortices in primates. In: Handbook of Neuropsychology (Grafman J, ed), pp 1-27. Amsterdam: Elsevier Science B.V.
  4. ^ Gottfried, Jay A.; Zald, David H. (December 2005). "On the scent of human olfactory orbitofrontal cortex: Meta-analysis and comparison to non-human primates". Brain Research Reviews. 50 (2): 287–304. doi:10.1016/j.brainresrev.2005.08.004. PMID 16213593.
  5. ^ Rolls, Edmund T. (June 2004). "The functions of the orbitofrontal cortex". Brain and Cognition. 55 (1): 11–29. doi:10.1016/S0278-2626(03)00277-X. PMID 15134840.
  6. ^ Kringelbach, Morten L. (September 2005). "The human orbitofrontal cortex: linking reward to hedonic experience". Nature Reviews Neuroscience. 6 (9): 691–702. doi:10.1038/nrn1747. ISSN 1471-003X. PMID 16136173.
  7. ^ Rushworth, M.F.S.; Behrens, T.E.J.; Rudebeck, P.H.; Walton, M.E. (April 2007). "Contrasting roles for cingulate and orbitofrontal cortex in decisions and social behaviour". Trends in Cognitive Sciences. 11 (4): 168–176. doi:10.1016/j.tics.2007.01.004. PMID 17337237.
  8. ^ Dixon, Matthew L.; Thiruchselvam, Ravi; Todd, Rebecca; Christoff, Kalina (October 2017). "Emotion and the prefrontal cortex: An integrative review". Psychological Bulletin. 143 (10): 1033–1081. doi:10.1037/bul0000096. ISSN 1939-1455. PMID 28616997.
  9. ^ Kringelbach, Morten L.; Rolls, Edmund T. (April 2004). "The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology". Progress in Neurobiology. 72 (5): 341–372. doi:10.1016/j.pneurobio.2004.03.006. ISSN 0301-0082. PMID 15157726.
  10. ^ Damasio, Antonio R. (1994). Descartes' error: emotion, reason, and the human brain. New York: Putnam. ISBN 978-0-399-13894-2.
  11. ^ Fuster, J.M. The Prefrontal Cortex, (Raven Press, New York, 1997).
  12. ^ Isamah N, Faison W, Payne ME, MacFall J, Steffens DC, Beyer JL, Krishnan R, Taylor WD (2010). "Variability in Frontotemporal Brain Structure: The Importance of Recruitment of African Americans in Neuroscience Research". PLOS ONE. 5 (10): e13642. Bibcode:2010PLoSO...513642I. doi:10.1371/journal.pone.0013642. PMC 2964318. PMID 21049028.
  13. ^ Uylings HB, Groenewegen HJ, Kolb B (2003). "Do rats have a prefrontal cortex?". Behav Brain Res. 146 (1–2): 3–17. doi:10.1016/j.bbr.2003.09.028. PMID 14643455. S2CID 32136463.
  14. ^ a b Mackey, Sott; Petrides, Michael (2006). "Chapter 2: The orbitofrontal cortex: sulcal and gyral morphology and architecture". In Zald, David H.; Rauch, Scott (eds.). The Orbitofrontal Cortex. New York: Oxford University Press. p. 34. ISBN 9780198565741.
  15. ^ Mackey, Sott; Petrides, Michael (2006). "Chapter 2: The orbitofrontal cortex: sulcal and gyral morphology and architecture". In Zald, David H.; Rauch, Scott (eds.). The Orbitofrontal Cortex. New York: Oxford University Press. p. 24. ISBN 9780198565741.
  16. ^ a b c Passingham, Richard E.; Wise, Steven P. (2012). "Chapter 4 Orbital prefrontal cortex: choosing objects based on outcomes". The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution and Origin of Insight. Great Clarendon Street, Oxford: Oxford University Press. p. 97. ISBN 9780199552917.
  17. ^ a b Haber, SN; Behrens, TE (3 September 2014). "The neural network underlying incentive-based learning: implications for interpreting circuit disruptions in psychiatric disorders". Neuron. 83 (5): 1019–39. doi:10.1016/j.neuron.2014.08.031. PMC 4255982. PMID 25189208.
  18. ^ a b Barbas, Helen; Zikopoulos, Basilis (2006). "Chapter 4: Sequential and parallel circuits for emotional processing in the primate orbitofrontal cortex". In Rauch, Scott L.; Zald, David H. (eds.). The Orbitofrontal Cortex. New York: Oxford University Press. p. 67.
  19. ^ a b c Price, Joseph L. (2006). "Chapter 3: Connections of the orbital cortex". In Rauch, Scott L.; Zald, David H. (eds.). The Orbitofrontal Cortex. New York: Oxford University Press. p. 42.
  20. ^ Rudebeck, PH; Murray, EA (December 2011). "Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values". Annals of the New York Academy of Sciences. 1239 (1): 1–13. Bibcode:2011NYASA1239....1R. doi:10.1111/j.1749-6632.2011.06267.x. PMC 3951748. PMID 22145870.
  21. ^ a b c Rolls, ET (March 2000). "The orbitofrontal cortex and reward". Cerebral Cortex. 10 (3): 284–94. doi:10.1093/cercor/10.3.284. PMID 10731223.
  22. ^ Rolls, ET (November 2004). "Convergence of sensory systems in the orbitofrontal cortex in primates and brain design for emotion". The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology. 281 (1): 1212–25. doi:10.1002/ar.a.20126. PMID 15470678.
  23. ^ a b Rempel-Clower, NL (December 2007). "Role of orbitofrontal cortex connections in emotion". Annals of the New York Academy of Sciences. 1121 (1): 72–86. Bibcode:2007NYASA1121...72R. doi:10.1196/annals.1401.026. PMID 17846152. S2CID 21317263.
  24. ^ Price, Joseph L. (2006). "Chapter 3: Connections of the orbital cortex". In Rauch, Scott L.; Zald, David H. (eds.). The Orbitofrontal Cortex. New York: Oxford University Press. p. 45.
  25. ^ a b c Wikenheiser, AM; Schoenbaum, G (August 2016). "Over the river, through the woods: cognitive maps in the hippocampus and orbitofrontal cortex". Nature Reviews. Neuroscience. 17 (8): 513–23. doi:10.1038/nrn.2016.56. PMC 5541258. PMID 27256552.
  26. ^ a b Fettes, P; Schulze, L; Downar, J (2017). "Cortico-Striatal-Thalamic Loop Circuits of the Orbitofrontal Cortex: Promising Therapeutic Targets in Psychiatric Illness". Frontiers in Systems Neuroscience. 11 25. doi:10.3389/fnsys.2017.00025. PMC 5406748. PMID 28496402.
  27. ^ Wilson, Robert C.; Takahashi, Yuji K.; Schoenbaum, Geoffrey; Niv, Yael (January 2014). "Orbitofrontal Cortex as a Cognitive Map of Task Space". Neuron. 81 (2): 267–279. doi:10.1016/j.neuron.2013.11.005. ISSN 0896-6273. PMC 4001869. PMID 24462094.
  28. ^ a b c Sadacca, BF; Wikenheiser, AM; Schoenbaum, G (14 March 2017). "Toward a theoretical role for tonic norepinephrine in the orbitofrontal cortex in facilitating flexible learning". Neuroscience. 345: 124–129. doi:10.1016/j.neuroscience.2016.04.017. PMC 5461826. PMID 27102419.
  29. ^ Stalnaker, TA; Cooch, NK; Schoenbaum, G (May 2015). "What the orbitofrontal cortex does not do". Nature Neuroscience. 18 (5): 620–7. doi:10.1038/nn.3982. PMC 5541252. PMID 25919962.
  30. ^ Tobia, M. J.; Guo, R.; Schwarze, U.; Boehmer, W.; Gl?scher, J.; Finckh, B.; Marschner, A.; Büchel, C.; Obermayer, K.; Sommer, T. (2025-08-07). "Neural systems for choice and valuation with counterfactual learning signals". NeuroImage. 89: 57–69. doi:10.1016/j.neuroimage.2013.11.051. ISSN 1053-8119. PMID 24321554. S2CID 35280557.
  31. ^ Izquierdo, A (1 November 2017). "Functional Heterogeneity within Rat Orbitofrontal Cortex in Reward Learning and Decision Making". The Journal of Neuroscience. 37 (44): 10529–10540. doi:10.1523/JNEUROSCI.1678-17.2017. PMC 6596524. PMID 29093055.
  32. ^ Rudebeck, PH; Murray, EA (December 2011). "Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values". Annals of the New York Academy of Sciences. 1239 (1): 1–13. Bibcode:2011NYASA1239....1R. doi:10.1111/j.1749-6632.2011.06267.x. PMC 3951748. PMID 22145870.
  33. ^ Kringelbach, ML; Rolls, ET (April 2004). "The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology". Progress in Neurobiology. 72 (5): 341–72. doi:10.1016/j.pneurobio.2004.03.006. PMID 15157726. S2CID 13624163.
  34. ^ Sescousse, G; Caldú, X; Segura, B; Dreher, JC (May 2013). "Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies". Neuroscience and Biobehavioral Reviews. 37 (4): 681–96. doi:10.1016/j.neubiorev.2013.02.002. hdl:2066/117487. PMID 23415703. S2CID 8335094.
  35. ^ Padoa-Schioppa, C; Conen, KE (15 November 2017). "Orbitofrontal Cortex: A Neural Circuit for Economic Decisions". Neuron. 96 (4): 736–754. doi:10.1016/j.neuron.2017.09.031. PMC 5726577. PMID 29144973.
  36. ^ Sharpe, MJ; Schoenbaum, G (May 2016). "Back to basics: Making predictions in the orbitofrontal-amygdala circuit". Neurobiology of Learning and Memory. 131: 201–6. doi:10.1016/j.nlm.2016.04.009. PMC 5541254. PMID 27112314.
  37. ^ Barbas, H (August 2007). "Flow of information for emotions through temporal and orbitofrontal pathways". Journal of Anatomy. 211 (2): 237–49. doi:10.1111/j.1469-7580.2007.00777.x. PMC 2375774. PMID 17635630. The posterior orbitofrontal cortex targets dual systems in the amygdala which have opposite effects on central autonomic structures. Both pathways originate in posterior orbitofrontal cortex, but one targets heavily the inhibitory intercalated masses, whose activation can ultimately disinhibit central autonomic structures during emotional arousal.
  38. ^ Zikopoulos, B; H?istad, M; John, Y; Barbas, H (17 May 2017). "Posterior Orbitofrontal and Anterior Cingulate Pathways to the Amygdala Target Inhibitory and Excitatory Systems with Opposite Functions". The Journal of Neuroscience. 37 (20): 5051–5064. doi:10.1523/JNEUROSCI.3940-16.2017. PMC 5444191. PMID 28411274. The specific innervation of inhibitory systems in the amygdala found here, along with the differential impact that dopamine has on them, makes it possible to hypothesize how distinct autonomic states may be achieved. A strong pOFC influence on IM that activates DARPP-32+ and CB+ neurons may help modulate autonomic function by downregulating CeM and thereby facilitate social interactions in primates....On the other hand, in a panic condition, when survival is perceived to be threatened, dopamine levels markedly increase. DARPP-32+ neurons in IM may thus be primarily inhibited, rendering the pOFC pathway ineffective.
  39. ^ Walton M. E.; Behrens T. E.; Buckley M. J.; Rudebeck P. H.; Rushworth M. F. (2010). "Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning". Neuron. 65 (6): 927–939. doi:10.1016/j.neuron.2010.02.027. PMC 3566584. PMID 20346766.
  40. ^ Campbell-Meiklejohn D. K.; Kanai R.; Bahrami B.; Bach D. R.; Dolan R. J.; Roepstorff A.; Frith C. D. (2012). "Structure of orbitofrontal cortex predicts social influence". Current Biology. 22 (4): R123 – R124. Bibcode:2012CBio...22.R123C. doi:10.1016/j.cub.2012.01.012. PMC 3315000. PMID 22361146.
  41. ^ Tanferna A.; López-Jiménez L.; Blas J.; Hiraldo F.; Sergio F. (2012). "How Expert Advice Influences Decision Making". PLOS ONE. 7 (11): e49748. Bibcode:2012PLoSO...749748M. doi:10.1371/journal.pone.0049748. PMC 3504100. PMID 23185425.
  42. ^ Berridge, KC; Kringelbach, ML (6 May 2015). "Pleasure systems in the brain". Neuron. 86 (3): 646–64. doi:10.1016/j.neuron.2015.02.018. PMC 4425246. PMID 25950633.
  43. ^ Numan, Michael (2015). Neurobiology of social behavior: toward an understanding of the prosocial and antisocial brain. London, UK; Waltham, MA: Elsevier. p. 85. ISBN 978-0-12-416040-8. OCLC 879584151.
  44. ^ Rolls, Edmund T. (2006). "Chapter 5 The Neurophysiology and Functions of the Orbitofrontal Cortex". In Zald, David H.; Rauch, Scott L. (eds.). The Orbitofrontal Cortex. New York: Oxford University Press.
  45. ^ Hunt LT; Malalasekera WMN; de Berker AO; Miranda B; Farmer S; Behrens TEJ; Kennerley SW (26 September 2018). "Triple dissociation of attention and decision computations across prefrontal cortex". Nature Neuroscience. 21 (9): 1471–1481. doi:10.1038/s41593-018-0239-5. PMC 6331040. PMID 30258238.
  46. ^ Schultz, Wolfram; Tremblay, Leon (2006). "Chapter 7: Involvement of primate orbitofrontal neurons in reward, uncertainty, and learning 173 Wolfram Schultz and Leon Tremblay". In Zald, David H.; Rauch, Scott :L. (eds.). The Orbitofrontal Cortex. New York: Oxford University Press.
  47. ^ Schoenbaum G, Takahashi Y, Liu T, McDannald M (2011). "Does the orbitofrontal cortex signal value?". Annals of the New York Academy of Sciences. 1239 (1): 87–99. Bibcode:2011NYASA1239...87S. doi:10.1111/j.1749-6632.2011.06210.x. PMC 3530400. PMID 22145878.
  48. ^ Berlin, Heather A.; Rolls, Edmund T.; Iversen, Susan D. (December 2005). "Borderline personality disorder, impulsivity, and the orbitofrontal cortex". The American Journal of Psychiatry. 162 (12): 2360–2373. doi:10.1176/appi.ajp.162.12.2360. ISSN 0002-953X. PMID 16330602.
  49. ^ Ha, Sungji; Sohn, In-Jung; Kim, Namwook; Sim, Hyeon Jeong; Cheon, Keun-Ah (December 2015). "Characteristics of Brains in Autism Spectrum Disorder: Structure, Function and Connectivity across the Lifespan". Experimental Neurobiology. 24 (4): 273–284. doi:10.5607/en.2015.24.4.273. ISSN 1226-2560. PMC 4688328. PMID 26713076.
  50. ^ Jackowski, AP; Araújo Filho, GM; Almeida, AG; Araújo, CM; Reis, M; Nery, F; Batista, IR; Silva, I; Lacerda, AL (June 2012). "The involvement of the orbitofrontal cortex in psychiatric disorders: an update of neuroimaging findings". Revista Brasileira de Psiquiatria. 34 (2): 207–12. doi:10.1590/S1516-44462012000200014. PMID 22729418.
  51. ^ Milad, MR; Rauch, SL (December 2007). "The role of the orbitofrontal cortex in anxiety disorders". Annals of the New York Academy of Sciences. 1121 (1): 546–61. Bibcode:2007NYASA1121..546M. doi:10.1196/annals.1401.006. PMID 17698998. S2CID 34467365.
  52. ^ Nakao, T; Okada, K; Kanba, S (August 2014). "Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings". Psychiatry and Clinical Neurosciences. 68 (8): 587–605. doi:10.1111/pcn.12195. PMID 24762196. S2CID 5528241.
  53. ^ Fineberg, NA; Potenza, MN; Chamberlain, SR; Berlin, HA; Menzies, L; Bechara, A; Sahakian, BJ; Robbins, TW; Bullmore, ET; Hollander, E (February 2010). "Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review". Neuropsychopharmacology. 35 (3): 591–604. doi:10.1038/npp.2009.185. PMC 3055606. PMID 19940844.
  54. ^ Milad, MR; Rauch, SL (January 2012). "Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways". Trends in Cognitive Sciences. 16 (1): 43–51. doi:10.1016/j.tics.2011.11.003. PMC 4955838. PMID 22138231.
  55. ^ Vaghi, M. M; Robbins, T. W (October 2017). "Task-Based Functional Neuroimaging Studies of Obsessive-Compulsive Disorder: A Hypothesis-Driven Review". In Pittenger, Christopher (ed.). Obsessive-compulsive Disorder: Phenomenology, Pathophysiology, and Treatment Obsessive-compulsive Disorder: Phenomenology, Pathophysiology, and Treatment. Vol. 1. Oxford University Press. pp. 239–240. doi:10.1093/med/9780190228163.003.0022.
  56. ^ Schoenbaum, G; Chang, CY; Lucantonio, F; Takahashi, YK (December 2016). "Thinking Outside the Box: Orbitofrontal Cortex, Imagination, and How We Can Treat Addiction". Neuropsychopharmacology. 41 (13): 2966–2976. doi:10.1038/npp.2016.147. PMC 5101562. PMID 27510424.
  57. ^ Koob, GF; Volkow, ND (January 2010). "Neurocircuitry of addiction". Neuropsychopharmacology. 35 (1): 217–38. doi:10.1038/npp.2009.110. PMC 2805560. PMID 19710631.
  58. ^ Moorman, DE (2 February 2018). "The role of the orbitofrontal cortex in alcohol use, abuse, and dependence". Progress in Neuro-psychopharmacology & Biological Psychiatry. 87 (Pt A): 85–107. doi:10.1016/j.pnpbp.2018.01.010. PMC 6072631. PMID 29355587.
  59. ^ Gowin, JL; Mackey, S; Paulus, MP (1 September 2013). "Altered risk-related processing in substance users: imbalance of pain and gain". Drug and Alcohol Dependence. 132 (1–2): 13–21. doi:10.1016/j.drugalcdep.2013.03.019. PMC 3748224. PMID 23623507. Individuals with SUDs show several processing abnormalities during risk-taking decision-making, which include altered valuation of options (VMPFC) and outcomes (OFC and striatum), poor estimation of uncertainty (ACC and insular cortex), diminished executive control (DLPFC), and an attenuated influence of emotional salience (amygdala), and reduced responsiveness to somatic markers (somatosensory cortex). These neural processing differences during risk-taking among individuals with SUDs have been linked to poorer behavioral performance on risk-taking tasks and a more extensive history of substance use
  60. ^ Chase, HW; Eickhoff, SB; Laird, AR; Hogarth, L (15 October 2011). "The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis". Biological Psychiatry. 70 (8): 785–93. doi:10.1016/j.biopsych.2011.05.025. PMC 4827617. PMID 21757184. A medial region of the OFC showed greater activation by drug cues compared with control cues and was consistently activated in the nontreatment-seeking subgroup. There is substantial evidence that this region plays a role in appetitive behavior and decision making (86,87), in particular with regard to expectations of reward (88) predicted by conditioned stimuli (89–94), which can control instrumental action selectio
  61. ^ Lucantonio, F; Caprioli, D; Schoenbaum, G (January 2014). "Transition from 'model-based' to 'model-free' behavioral control in addiction: Involvement of the orbitofrontal cortex and dorsolateral striatum". Neuropharmacology. 76 Pt B: 407–15. doi:10.1016/j.neuropharm.2013.05.033. PMC 3809026. PMID 23752095.
  62. ^ Rubia, K (15 June 2011). ""Cool" inferior frontostriatal dysfunction in attention-deficit/hyperactivity disorder versus "hot" ventromedial orbitofrontal-limbic dysfunction in conduct disorder: a review". Biological Psychiatry. 69 (12): e69–87. doi:10.1016/j.biopsych.2010.09.023. PMID 21094938. S2CID 14987165.
  63. ^ Rosell, DR; Siever, LJ (June 2015). "The neurobiology of aggression and violence". CNS Spectrums. 20 (3): 254–79. doi:10.1017/S109285291500019X. PMID 25936249.
  64. ^ a b Rolls, ET (September 2016). "A non-reward attractor theory of depression" (PDF). Neuroscience and Biobehavioral Reviews. 68: 47–58. doi:10.1016/j.neubiorev.2016.05.007. PMID 27181908. S2CID 8145667.
  65. ^ J. Wilson; M. Jenkinson; I. E. T. de Araujo; Morten L. Kringelbach; E. T. Rolls & Peter Jezzard (October 2002). "Fast, fully automated global and local magnetic field optimization for fMRI of the human brain". NeuroImage. 17 (2): 967–976. doi:10.1016/S1053-8119(02)91172-9. PMID 12377170.
  66. ^ Ahmari, SE; Dougherty, DD (August 2015). "Dissecting Ocd Circuits: From Animal Models to Targeted Treatments". Depression and Anxiety. 32 (8): 550–62. doi:10.1002/da.22367. PMC 4515165. PMID 25952989.
  67. ^ Vertechi, Pietro; Lottem, Eran; Sarra, Dario; Godinho, Beatriz; Treves, Isaac; Quendera, Tiago; Lohuis, Matthijs Nicolai Oude; Mainen, Zachary F. (2025-08-07). "Inference-Based Decisions in a Hidden State Foraging Task: Differential Contributions of Prefrontal Cortical Areas". Neuron. 106 (1): 166–176.e6. doi:10.1016/j.neuron.2020.01.017. ISSN 0896-6273. PMC 7146546. PMID 32048995.
  68. ^ Snowden J. S.; Bathgate D.; Varma A.; Blackshaw A.; Gibbons Z. C.; Neary D. (2001). "Distinct behavioural profiles in frontotemporal dementia and semantic dementia". J Neurol Neurosurg Psychiatry. 70 (3): 323–332. doi:10.1136/jnnp.70.3.323. PMC 1737271. PMID 11181853.
  69. ^ Xiao, Xiong; Deng, Hanfei; Wei, Lei; Huang, Yanwang; Wang, Zuoren (September 2016). "Neural activity of orbitofrontal cortex contributes to control of waiting". The European Journal of Neuroscience. 44 (6): 2300–2313. doi:10.1111/ejn.13320. ISSN 1460-9568. PMID 27336203. S2CID 205105682.
  70. ^ a b Paulus M. P.; Hozack N. E.; Zauscher B. E.; Frank L.; Brown G. G.; Braff D. L.; Schuckit M. A. (2002). "Behavioral and Functional Neuroimaging Evidence for Prefrontal Dysfunction in Methamphetamine-Dependent Subjects". Neuropsychopharmacology. 26 (1): 53–63. doi:10.1016/s0893-133x(01)00334-7. PMID 11751032.
  71. ^ a b Toplak M. E.; Jain U.; Tannock R. (2005). "Executive and motivational processes in adolescents with Attention-Deficit-Hyperactivity Disorder (ADHD)". Behavioral and Brain Functions. 1 (1): 8–20. doi:10.1186/1744-9081-1-8. PMC 1183187. PMID 15982413.
  72. ^ a b Verdejo-Garcia A.; Bechara A.; Recknor E. C.; Perez-Garcia M. (2006). "Executive dysfunction in substance dependent individuals during drug use and abstinence: An examination of the behavioral, cognitive and emotional correlates of addiction". Journal of the International Neuropsychological Society. 12 (3): 405–415. doi:10.1017/s1355617706060486. PMID 16903133. S2CID 15939155.
  73. ^ Cha, Jiook; Greenberg, Tsafrir; Carlson, Joshua M.; DeDora, Daniel J.; Hajcak, Greg; Mujica-Parodi, Lilianne R. (2025-08-07). "Circuit-Wide Structural and Functional Measures Predict Ventromedial Prefrontal Cortex Fear Generalization: Implications for Generalized Anxiety Disorder". The Journal of Neuroscience. 34 (11): 4043–4053. doi:10.1523/JNEUROSCI.3372-13.2014. ISSN 0270-6474. PMC 6705282. PMID 24623781.
  74. ^ Volkow N.D.; Fowler J.S. (2000). "Addiction a disease of compulsion and drive: involvement of the orbitofrontal cortex". Cerebral Cortex. 10 (3): 318–325. doi:10.1093/cercor/10.3.318. PMID 10731226.
  75. ^ Chamberlain S. R.; Odlaug B. L.; Boulougouris V.; Fineberg N. A.; Grant J. E. (2009). "Trichotillomania: Neurobiology and treatment". Neuroscience and Biobehavioral Reviews. 33 (6): 831–842. doi:10.1016/j.neubiorev.2009.02.002. PMID 19428495. S2CID 6956143.
  76. ^ Menzies L. (2008). "Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited". Neuroscience and Biobehavioral Reviews. 32 (3): 525–549. doi:10.1016/j.neubiorev.2007.09.005. PMC 2889493. PMID 18061263.
  77. ^ a b Tekin S.; Cummings J. L. (2002). "Frontal-subcortical neuronal circuits and clinical neuropsychiatry: An update". Journal of Psychosomatic Research. 53 (2): 647–654. doi:10.1016/s0022-3999(02)00428-2. PMID 12169339.
  78. ^ Rahman S.; Sahakian B. J.; Hodges J. R.; Rogers R. D.; Robbins T. W. (1999). "Specific cognitive deficits in early behavioural variant frontotemporal dementia". Brain. 122 (8): 1469–1493. doi:10.1093/brain/122.8.1469. PMID 10430832.
  79. ^ Seeley W. W.; Crawford R.; Rascovsky K.; Kramer J. H.; Weiner M.; Miller B. L.; Gorno-Tempini L. (2008). "Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia". Archives of Neurology. 65 (2): 249–255. doi:10.1001/archneurol.2007.38. PMC 2544627. PMID 18268196.
  80. ^ Chibane, IS; Boucher, O; Dubeau, F; Tran, TPY; Mohamed, I; McLachlan, R; Sadler, RM; Desbiens, R; Carmant, L; Nguyen, DK (November 2017). "Orbitofrontal epilepsy: Case series and review of literature". Epilepsy & Behavior. 76: 32–38. doi:10.1016/j.yebeh.2017.08.038. PMID 28928072. S2CID 13656956.
  81. ^ Gold, JA; Sher, Y; Maldonado, JR (2016). "Frontal Lobe Epilepsy: A Primer for Psychiatrists and a Systematic Review of Psychiatric Manifestations". Psychosomatics. 57 (5): 445–64. doi:10.1016/j.psym.2016.05.005. PMID 27494984.
  82. ^ Smith, JR; Sillay, K; Winkler, P; King, DW; Loring, DW (2004). "Orbitofrontal epilepsy: electroclinical analysis of surgical cases and literature review". Stereotactic and Functional Neurosurgery. 82 (1): 20–5. doi:10.1159/000076656. PMID 15007215. S2CID 18811550.
  83. ^ Rolls E. T.; Hornak J.; Wade D.; McGrath J. (1994). "Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage". J Neurol Neurosurg Psychiatry. 57 (12): 1518–1524. doi:10.1136/jnnp.57.12.1518. PMC 1073235. PMID 7798983.
  84. ^ Bechara A.; Damasio A. R.; Damasio H.; Anderson S.W. (1994). "Insensitivity to future consequences following damage to human prefrontal cortex". Cognition. 50 (1–3): 7–15. doi:10.1016/0010-0277(94)90018-3. PMID 8039375. S2CID 204981454.
  85. ^ Stone V.E.; Baron-Cohen S.; Knight R. T. (1998a). "Frontal Lobe Contributions to Theory of Mind". Journal of Medical Investigation. 10 (5): 640–656. CiteSeerX 10.1.1.330.1488. doi:10.1162/089892998562942. PMID 9802997. S2CID 207724498.
[edit]
海市蜃楼为什么可怕 回族不吃什么 为什么插几下就射了 喜鹊吃什么食物 985高校是什么意思
捉摸不透是什么意思 单活胎是什么意思 生理期吃什么好 32岁属什么 鬼一般找什么人压床
属相是什么意思 总是出汗是什么原因 叶酸有什么作用和功效 大便带血是什么原因 推辞是什么意思
镇党委副书记是什么级别 郭富城属什么生肖 敏感肌是什么 感染性疾病科看什么病 缺钾吃什么药
丹田是什么意思hcv8jop6ns8r.cn 早搏是什么hcv8jop2ns7r.cn 脖子长痘是什么原因引起的cj623037.com le是什么元素hcv9jop7ns9r.cn 念珠菌是什么病hcv9jop6ns8r.cn
头孢吃多了有什么副作用hcv8jop4ns7r.cn 今年是什么年号aiwuzhiyu.com 新疆以前叫什么hcv9jop3ns9r.cn 属马是什么星座hcv8jop4ns8r.cn 女人湿气重吃什么药效果好wmyky.com
10月份什么星座hcv8jop0ns6r.cn 巴基斯坦是什么语言hcv8jop4ns9r.cn 低血糖不能吃什么食物hcv8jop1ns9r.cn 前列腺钙化是什么病hcv9jop2ns2r.cn 老人脚肿是什么原因引起的hcv9jop7ns5r.cn
乳腺4a类是什么意思hcv9jop1ns8r.cn 老心慌是什么原因hcv7jop6ns8r.cn 鸭子喜欢吃什么食物jiuxinfghf.com h 是什么意思hcv8jop0ns2r.cn 做梦梦见火是什么征兆hcv7jop9ns0r.cn
百度