经常口腔溃疡吃什么维生素| asks是什么意思| 云南白药有什么功效| 大红袍适合什么季节喝| 办健康证需要什么| 看望老人买什么礼物好| 吃虫草有什么好处| 银杏树叶像什么| 祈祷是什么意思| 什么食物含磷高| 什么牛肉最好吃| 鬼压床是什么意思| 犹太人为什么那么聪明| 野生刺猬吃什么食物| 4月18日什么星座| 光脚走路有什么好处| 银行卡睡眠状态是什么意思| afp是什么意思| 平光眼镜是什么意思| lauren是什么意思| 手指起水泡是什么原因| 治前列腺炎吃什么药效果最好| 睡觉经常流口水是什么原因| 关节炎看什么科| 户籍所在地是什么| 总胆汁酸高是什么意思| 手凉是什么原因| 出油多是什么原因| 66年属马是什么命| 手指代表什么生肖| 额头上有痣代表什么| 斐然是什么意思| o是什么元素| 什么的桌椅| 频繁做噩梦是什么原因| 唐氏筛查高风险是什么意思| 古来稀是什么意思| 7月20是什么星座| 疖肿什么意思| 逆生长是什么意思| 当兵什么时候体检| 啤酒喝了有什么好处| 宛字五行属什么| 蒲地蓝消炎片主治什么| 孔雀鱼吃什么食物| 芒硝是什么| 排卵日和排卵期有什么区别| 什么是臆想症| 白色车里放什么摆件好| 头皮长痘痘是什么原因| 前降支中段心肌桥什么意思| 色氨酸是什么| 细菌性阴道炎是什么原因引起的| 肝回声细密是什么意思| 地狱不空誓不成佛是什么意思| 牙疼吃什么止疼药见效快| 市检察长是什么级别| 马云父母是做什么的| 什么分泌胰岛素| 为什么会便秘| 明天属什么生肖| 减肥饿了可以吃什么| 珂润属于什么档次| 7月13日是什么日子| 浮瓜沉李什么意思| 脾胃虚弱吃什么食物好| 父亲节送爸爸什么| 打哈欠是什么原因| ozark是什么牌子| 火气重吃什么降火| 左眼跳什么| 色盲是什么遗传方式| 下午5点半是什么时辰| 鱼刺卡喉咙去医院挂什么科| 654-2是什么药| 互为表里是什么意思| 宝宝睡眠不好是什么原因| 手脚麻是什么原因| 矜贵是什么意思| 井代表什么数字| 乌龟为什么会叫| 防微杜渐什么意思| 二级教授是什么意思| 14岁属什么| jf是什么警察| 刷屏是什么意思| 脑梗有什么前兆| 省公安厅副厅长是什么级别| 梦见打死黄鼠狼是什么意思| 甲醛什么味道| 做孕检都检查什么项目| 睾丸痒用什么药膏最好| 面瘫什么意思| 手抖挂什么科| 卵巢是什么| 眼睛干涩有异物感用什么眼药水| pray是什么意思| 单脐动脉对胎儿有什么影响| 晚上尿多什么原因| 为什么叫新四军| kid是什么意思| 流水席是什么意思| 八月三号什么星座| 阳上人是什么意思| 肚脐周围疼是什么原因| 山水有相逢是什么意思| mrr是什么意思| 过生日吃什么菜寓意好| 打豆豆什么意思| 什么是扁平足图片| 收孕妇尿是干什么用的| 72年属什么生肖| 慰劳是什么意思| 孙俪最新电视剧叫什么| sun代表什么| 梦见游泳是什么预兆| 什么的嗓音| x58主板配什么cpu| 天蝎属于什么象星座| 口疮吃什么药| 苯磺酸氨氯地平片是什么药| 夏季吃什么菜最好菜谱| 香油吃多了有什么害处| 顺势而为什么意思| 拉肚子吃什么饭| 脾胃虚寒有什么症状| 心脏为什么会突然刺痛| 性格是什么意思| 公鸡蛋是什么| 物业费都包括什么服务| 羲什么意思| 嘴酸是什么原因| instagram是什么软件| 念珠菌感染用什么药效果好| 粉丝炒什么好吃| 生鱼又叫什么鱼| 骨折一个月能恢复到什么程度| 绿豆跟什么一起煮最好| 疣是什么原因造成的| 护士节送什么鲜花| 禄神是什么意思| 海藻是什么| 升天是什么意思| 上日下文念什么| acei是什么意思| 十一月三十是什么星座| 毕是什么意思| 仙草粉是什么做的| 为什么有些人特别招蚊子| 男人梦见蛇是什么征兆| 7月八号是什么星座| 交链孢霉过敏是什么| 什么水果降火效果最好| 胆红素高有什么症状| 女朋友的妹妹叫什么| 发改委是干什么的| 合集是什么意思| 督察是什么级别| 四月十五日是什么日子| 9月13日是什么星座| 公元前3000年是什么朝代| 喉咙里老是有痰是什么原因| 杨八妹属什么生肖| 什么是梦| 余数是什么| 101什么意思| 为什么会得多囊| 中二是什么意思| 做梦梦见掉牙齿是什么意思| 兔子可以吃什么蔬菜| 驳什么意思| 睾丸隐痛什么原因| ahc是韩国什么档次| 全会是什么意思| 鹿字五行属什么| 喉咙肿大是什么原因| 牙龈炎吃什么药| 油菜花是什么季节开的| 感冒挂什么科室| 失聪是什么原因造成的| 霍金什么时候去世| 西南方向是什么方位| 月蚀是什么意思| 舌苔少是什么原因| 吃什么降血脂| 胎心监护是检查什么| 麦冬是什么植物| 定义是什么| 排骨煮什么好吃| 甲状腺结节什么原因引起的| 罗姓男孩取什么名字好| 今年28岁属什么| 7月13日是什么节日| pwr是什么意思| 什么时间段买机票最便宜| 脸上长癣用什么药膏| 脱脂乳粉是什么| 养肝护肝喝什么茶最好| 榴莲补什么| 想吐吃什么药可以缓解| 皮肤偏黄适合穿什么颜色的衣服| gn什么意思| 铁扇公主是什么妖精| 脸色苍白没有血色是什么原因| 意向什么意思| 什么东西最伤肾| 木人石心是什么意思| 三聚净戒是指什么戒| 怎么算自己五行缺什么| 什么是颈椎病| 1976年属什么生肖| 拉脱水是什么症状| 猫咪打呼噜代表什么| 肮脏是什么意思| 牛蛙不能和什么一起吃| 脱氧核糖是什么| 日文是什么字| 甲状腺去医院挂什么科| 速度等于什么| 粉瘤是什么| 甘油三酯高吃什么食物| 梦见上楼梯是什么意思| 心脏早搏是什么原因造成的| 宋五行属什么| 慢性萎缩性胃炎c2是什么意思| 鱼泡是鱼的什么器官| 金银花什么时候开花| 尿酸高什么意思| 青少年额头长痘痘是什么原因| 马甲是什么意思?| 杨梅有什么功效和作用| 孕妇刚生完孩子吃什么好| 吃鱼眼睛有什么好处| 四肢无力是什么病| 猪心炖什么治失眠| 子是什么生肖| 脾胃虚寒吃什么水果好| 台湾什么时候收回| 芒硝是什么东西| 屎壳郎吃什么| 泛化是什么意思| 减肥可以吃什么主食| 一什么不什么| cos什么意思| 广东是什么气候| 女孩叫锦什么好听| 为什么一低头就晕| 腿抽筋什么原因引起的| 植树节是什么时候| 小儿感冒吃什么药| 青金石蓝是什么颜色| 变性乙醇是什么东西| 酗酒是什么意思| 哇噻是什么意思| 油菜花什么颜色| 晚上睡不着觉吃什么药| 脂肪肝吃什么药| 棉花是什么时候传入中国的| 黄精什么人不能吃| 吃饭后肚子疼是什么原因| 燕条和燕盏有什么区别| 处长是什么级别| 腹部增强ct能检查出什么| 念旧的人是什么样的人| 百度Jump to content

浙江:丽水市签订邮政、快递行业“扫黄打非”责任...

From Wikipedia, the free encyclopedia
百度 早在2016年8月,温哥华所在的BC省政府向海外投资者征收15%的投机税。

The proper generalized decomposition (PGD) is an iterative numerical method for solving boundary value problems (BVPs), that is, partial differential equations constrained by a set of boundary conditions, such as the Poisson's equation or the Laplace's equation.

The PGD algorithm computes an approximation of the solution of the BVP by successive enrichment. This means that, in each iteration, a new component (or mode) is computed and added to the approximation. In principle, the more modes obtained, the closer the approximation is to its theoretical solution. Unlike POD principal components, PGD modes are not necessarily orthogonal to each other.

By selecting only the most relevant PGD modes, a reduced order model of the solution is obtained. Because of this, PGD is considered a dimensionality reduction algorithm.

Description

[edit]

The proper generalized decomposition is a method characterized by

  1. a variational formulation of the problem,
  2. a discretization of the domain in the style of the finite element method,
  3. the assumption that the solution can be approximated as a separate representation and
  4. a numerical greedy algorithm to find the solution.[1][2]

Variational formulation

[edit]

In the Proper Generalized Decomposition method, the variational formulation involves translating the problem into a format where the solution can be approximated by minimizing (or sometimes maximizing) a functional. A functional is a scalar quantity that depends on a function, which in this case, represents our problem.

The most commonly implemented variational formulation in PGD is the Bubnov-Galerkin method.[3][4] This method is chosen for its ability to provide an approximate solution to complex problems, such as those described by partial differential equations (PDEs). In the Bubnov-Galerkin approach, the idea is to project the problem onto a space spanned by a finite number of basis functions. These basis functions are chosen to approximate the solution space of the problem.

In the Bubnov-Galerkin method, we seek an approximate solution that satisfies the integral form of the PDEs over the domain of the problem. This is different from directly solving the differential equations. By doing so, the method transforms the problem into finding the coefficients that best fit this integral equation in the chosen function space.

While the Bubnov-Galerkin method is prevalent, other variational formulations are also used in PGD,[5][3] depending on the specific requirements and characteristics of the problem, such as:

  • Petrov-Galerkin Method: This method is similar to the Bubnov-Galerkin approach but differs in the choice of test functions. In the Petrov-Galerkin method, the test functions (used to project the residual of the differential equation) are different from the trial functions (used to approximate the solution). This can lead to improved stability and accuracy for certain types of problems.[6]
  • Collocation Method: In collocation methods, the differential equation is satisfied at a finite number of points in the domain, known as collocation points. This approach can be simpler and more direct than the integral-based methods like Galerkin's, but it may also be less stable for some problems.
  • Least Squares Method: This approach involves minimizing the square of the residual of the differential equation over the domain. It is particularly useful when dealing with problems where traditional methods struggle with stability or convergence.
  • Mixed Finite Element Method: In mixed methods, additional variables (such as fluxes or gradients) are introduced and approximated along with the primary variable of interest. This can lead to more accurate and stable solutions for certain problems, especially those involving incompressibility or conservation laws.
  • Discontinuous Galerkin Method: This is a variant of the Galerkin method where the solution is allowed to be discontinuous across element boundaries. This method is particularly useful for problems with sharp gradients or discontinuities.

Domain discretization

[edit]

The discretization of the domain is a well defined set of procedures that cover (a) the creation of finite element meshes, (b) the definition of basis function on reference elements (also called shape functions) and (c) the mapping of reference elements onto the elements of the mesh.

Separate representation

[edit]

PGD assumes that the solution u of a (multidimensional) problem can be approximated as a separate representation of the form where the number of addends N and the functional products X1(x1), X2(x2), ..., Xd(xd), each depending on a variable (or variables), are unknown beforehand.

Greedy algorithm

[edit]

The solution is sought by applying a greedy algorithm, usually the fixed point algorithm, to the weak formulation of the problem. For each iteration i of the algorithm, a mode of the solution is computed. Each mode consists of a set of numerical values of the functional products X1(x1), ..., Xd(xd), which enrich the approximation of the solution. Due to the greedy nature of the algorithm, the term 'enrich' is used rather than 'improve', since some modes may actually worsen the approach. The number of computed modes required to obtain an approximation of the solution below a certain error threshold depends on the stopping criterion of the iterative algorithm.

Features

[edit]

PGD is suitable for solving high-dimensional problems, since it overcomes the limitations of classical approaches. In particular, PGD avoids the curse of dimensionality, as solving decoupled problems is computationally much less expensive than solving multidimensional problems.

Therefore, PGD enables to re-adapt parametric problems into a multidimensional framework by setting the parameters of the problem as extra coordinates: where a series of functional products K1(k1), K2(k2), ..., Kp(kp), each depending on a parameter (or parameters), has been incorporated to the equation.

In this case, the obtained approximation of the solution is called computational vademecum: a general meta-model containing all the particular solutions for every possible value of the involved parameters.[7]

Sparse Subspace Learning

[edit]

The Sparse Subspace Learning (SSL) method leverages the use of hierarchical collocation to approximate the numerical solution of parametric models. With respect to traditional projection-based reduced order modeling, the use of a collocation enables non-intrusive approach based on sparse adaptive sampling of the parametric space. This allows to recover the lowdimensional structure of the parametric solution subspace while also learning the functional dependency from the parameters in explicit form. A sparse low-rank approximate tensor representation of the parametric solution can be built through an incremental strategy that only needs to have access to the output of a deterministic solver. Non-intrusiveness makes this approach straightforwardly applicable to challenging problems characterized by nonlinearity or non affine weak forms.[8]

References

[edit]
  1. ^ Amine Ammar; Béchir Mokdad; Francisco Chinesta; Roland Keunings (2006). "A New Family of Solvers for Some Classes of Multidimensional Partial Differential Equations Encountered in Kinetic Theory Modeling of Complex Fluids". Journal of Non-Newtonian Fluid Mechanics. 139 (3): 153. Bibcode:2006JNNFM.139..153A. doi:10.1016/j.jnnfm.2006.07.007.
  2. ^ Amine Ammar; Béchir Mokdad; Francisco Chinesta; Roland Keunings (2007). "A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations". Journal of Non-Newtonian Fluid Mechanics. 144 (2): 98. Bibcode:2007JNNFM.144...98A. doi:10.1016/j.jnnfm.2007.03.009.
  3. ^ a b Croft, Thomas Lloyd David (2025-08-07). Proper generalised decompositions: theory and applications (phd thesis). Cardiff University.
  4. ^ Chinesta, Francisco; Keunings, Roland; Leygue, Adrien (2014). The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer. SpringerBriefs in Applied Sciences and Technology. Springer International Publishing. ISBN 978-3-319-02864-4.
  5. ^ Aguado, José Vicente (18 Nov 2018). "Advanced strategies for the separated formulation of problems in the Proper Generalized Decomposition framework".
  6. ^ Perelló i Ribas, Rafel (2025-08-07). Petrov-Galerkin Proper Generalized Decomposition strategies for convection-diffusion problems (Master thesis thesis). Universitat Politècnica de Catalunya.
  7. ^ Francisco Chinesta, Adrien Leygue, Felipe Bordeu, Elías Cueto, David Gonzalez, Amine Ammar, Antonio Huerta (2013). "PGD-Based Computational Vademecum for Efficient Design, Optimization and Control". Archives of Computational Methods in Engineering.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Borzacchiello, Domenico; Aguado, José V.; Chinesta, Francisco (April 2019). "Non-intrusive Sparse Subspace Learning for Parametrized Problems". Archives of Computational Methods in Engineering. 26 (2): 303–326. doi:10.1007/s11831-017-9241-4. hdl:10985/18435. ISSN 1134-3060. S2CID 126121268.
胃胀腹胀吃什么药 梵行是什么意思 阴道吹气是什么原因 充电宝什么品牌好 大便培养是检查什么的
低温烫伤是什么意思 山炮是什么意思 心悸什么意思 被隐翅虫咬了涂什么药 pr过高是什么意思
羽衣甘蓝是什么菜 左上腹是什么器官 放浪形骸是什么意思 同型半胱氨酸高吃什么 嗯是什么意思
袖珍人是什么 小便发红是什么症状男 9.23什么星座 车水马龙是什么意思 甲功不正常有什么表现
谷丙转氨酶是检查什么hcv9jop7ns1r.cn 央企与国企有什么区别hcv7jop5ns2r.cn 小孩咳嗽吃什么药效果最好hcv7jop9ns9r.cn 肺栓塞有什么症状hcv9jop0ns1r.cn 头晕吃什么药hcv9jop3ns9r.cn
胆碱酯酶偏高说明什么hcv7jop7ns3r.cn 白带增多是什么原因hcv8jop2ns6r.cn 什么是润年gysmod.com 流注是什么意思hcv8jop2ns0r.cn 什么面料不容易皱hcv8jop7ns1r.cn
护照类型p是什么意思hcv9jop8ns0r.cn 血浆是什么颜色zsyouku.com 人流后吃什么水果好hcv9jop5ns2r.cn 午时属什么生肖hcv8jop8ns8r.cn 东风是什么意思hcv7jop9ns4r.cn
例假期间吃什么减肥hcv7jop6ns9r.cn cpu是什么意思hcv9jop2ns8r.cn 点子是什么意思hcv9jop1ns6r.cn 甲功三项能查出什么病hcv9jop0ns7r.cn 吃什么养肺hcv7jop6ns8r.cn
百度